Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Investigating stellar-mass black hole kicks

Repetto, Serena ; Davies, Melvyn B LU and Sigurdsson, Steinn (2012) In Monthly Notices of the Royal Astronomical Society 425(4). p.2799-2809
Abstract
We investigate whether stellar-mass black holes have to receive natal kicks in order to explain the observed distribution of low-mass X-ray binaries containing black holes within our Galaxy. Such binaries are the product of binary evolution, where the massive primary has exploded forming a stellar-mass black hole, probably after a common envelope phase where the system contracted down to separations of the order of 10-30 R-circle dot. We perform population synthesis calculations of these binaries, applying both kicks due to supernova mass-loss and natal kicks due to the newly formed black hole. We then integrate the trajectories of the binary systems within the Galactic potential. We find that natal kicks are in fact necessary to reach the... (More)
We investigate whether stellar-mass black holes have to receive natal kicks in order to explain the observed distribution of low-mass X-ray binaries containing black holes within our Galaxy. Such binaries are the product of binary evolution, where the massive primary has exploded forming a stellar-mass black hole, probably after a common envelope phase where the system contracted down to separations of the order of 10-30 R-circle dot. We perform population synthesis calculations of these binaries, applying both kicks due to supernova mass-loss and natal kicks due to the newly formed black hole. We then integrate the trajectories of the binary systems within the Galactic potential. We find that natal kicks are in fact necessary to reach the large distances above the Galactic plane achieved by some binaries. Further, we find that the distribution of natal kicks would seem to be similar to that of neutron stars, rather than one where the kick velocities are reduced by the ratio of black hole to neutron star mass (i.e. where the kicks have the same momentum). This result is somewhat surprising; in many pictures of stellar-mass black hole formation, one might have expected black holes to receive kicks having the same momentum (rather than the same speed) as those given to neutron stars. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
black hole physics, binaries: general, stars: neutron, supernovae:, general, Galaxy: kinematics and dynamics, X-rays: binaries
in
Monthly Notices of the Royal Astronomical Society
volume
425
issue
4
pages
2799 - 2809
publisher
Oxford University Press
external identifiers
  • wos:000318270500015
  • scopus:85040258836
ISSN
1365-2966
DOI
10.1111/j.1365-2966.2012.21549.x
language
English
LU publication?
yes
id
a728bf6b-5042-4f7a-a8d0-bbc796868d42 (old id 3853539)
date added to LUP
2016-04-01 10:47:18
date last changed
2024-04-21 21:46:00
@article{a728bf6b-5042-4f7a-a8d0-bbc796868d42,
  abstract     = {{We investigate whether stellar-mass black holes have to receive natal kicks in order to explain the observed distribution of low-mass X-ray binaries containing black holes within our Galaxy. Such binaries are the product of binary evolution, where the massive primary has exploded forming a stellar-mass black hole, probably after a common envelope phase where the system contracted down to separations of the order of 10-30 R-circle dot. We perform population synthesis calculations of these binaries, applying both kicks due to supernova mass-loss and natal kicks due to the newly formed black hole. We then integrate the trajectories of the binary systems within the Galactic potential. We find that natal kicks are in fact necessary to reach the large distances above the Galactic plane achieved by some binaries. Further, we find that the distribution of natal kicks would seem to be similar to that of neutron stars, rather than one where the kick velocities are reduced by the ratio of black hole to neutron star mass (i.e. where the kicks have the same momentum). This result is somewhat surprising; in many pictures of stellar-mass black hole formation, one might have expected black holes to receive kicks having the same momentum (rather than the same speed) as those given to neutron stars.}},
  author       = {{Repetto, Serena and Davies, Melvyn B and Sigurdsson, Steinn}},
  issn         = {{1365-2966}},
  keywords     = {{black hole physics; binaries: general; stars: neutron; supernovae:; general; Galaxy: kinematics and dynamics; X-rays: binaries}},
  language     = {{eng}},
  number       = {{4}},
  pages        = {{2799--2809}},
  publisher    = {{Oxford University Press}},
  series       = {{Monthly Notices of the Royal Astronomical Society}},
  title        = {{Investigating stellar-mass black hole kicks}},
  url          = {{http://dx.doi.org/10.1111/j.1365-2966.2012.21549.x}},
  doi          = {{10.1111/j.1365-2966.2012.21549.x}},
  volume       = {{425}},
  year         = {{2012}},
}