Autoionization following nanoplasma formation in atomic and molecular clusters
(2016) In European Physical Journal D. Atomic, Molecular, Optical and Plasma Physics 70(5).- Abstract
Abstract: Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in... (More)
Abstract: Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in molecular oxygen and carbon dioxide clusters as well as in atomic krypton and xenon clusters ionized by intense NIR pulses, for which we find clear bound-state signatures in the electron kinetic energy spectra. By applying terahertz (THz) streaking, we show that the observed autoionization processes take place on a picosecond to nanosecond timescale after the interaction of the NIR laser pulse with the clusters. Graphical abstract: [Figure not available: see fulltext.]
(Less)
- author
- Schütte, Bernd ; Lahl, Jan LU ; Oelze, Tim ; Krikunova, Maria ; Vrakking, Marc J. J. and Rouzée, Arnaud
- organization
- publishing date
- 2016
- type
- Contribution to journal
- publication status
- published
- subject
- in
- European Physical Journal D. Atomic, Molecular, Optical and Plasma Physics
- volume
- 70
- issue
- 5
- article number
- 115
- publisher
- EDP Sciences
- external identifiers
-
- scopus:84971283949
- wos:000376166600004
- ISSN
- 1434-6060
- DOI
- 10.1140/epjd/e2016-60727-3
- language
- English
- LU publication?
- yes
- id
- 385c861a-3702-4027-a0b3-6c175aa71cbc
- date added to LUP
- 2017-02-23 16:26:56
- date last changed
- 2025-01-07 08:16:40
@article{385c861a-3702-4027-a0b3-6c175aa71cbc, abstract = {{<p>Abstract: Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in molecular oxygen and carbon dioxide clusters as well as in atomic krypton and xenon clusters ionized by intense NIR pulses, for which we find clear bound-state signatures in the electron kinetic energy spectra. By applying terahertz (THz) streaking, we show that the observed autoionization processes take place on a picosecond to nanosecond timescale after the interaction of the NIR laser pulse with the clusters. Graphical abstract: [Figure not available: see fulltext.]</p>}}, author = {{Schütte, Bernd and Lahl, Jan and Oelze, Tim and Krikunova, Maria and Vrakking, Marc J. J. and Rouzée, Arnaud}}, issn = {{1434-6060}}, language = {{eng}}, number = {{5}}, publisher = {{EDP Sciences}}, series = {{European Physical Journal D. Atomic, Molecular, Optical and Plasma Physics}}, title = {{Autoionization following nanoplasma formation in atomic and molecular clusters}}, url = {{http://dx.doi.org/10.1140/epjd/e2016-60727-3}}, doi = {{10.1140/epjd/e2016-60727-3}}, volume = {{70}}, year = {{2016}}, }