Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Functional differentiation of antiporter-like polypeptides in complex I; a site-directed mutagenesis study of residues conserved in MrpA and NuoL but Not in MrpD, NuoM, and NuoN

Sperling, Eva LU ; Górecki, Kamil LU ; Drakenberg, Torbjörn LU and Hägerhäll, Cecilia LU (2016) In PLoS ONE 11(7).
Abstract

It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN) of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD) from a Na+ /H+ antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid... (More)

It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN) of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD) from a Na+ /H+ antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid residues in helix VIII, which are only conserved in NuoL and MrpA (but not in any of the other antiporter-like subunits.) and to compare their effect on the function of these two proteins. By combining complementation studies in B. subtilis and 23Na-NMR, response of mutants to high sodium levels were tested. All of the mutants were able to cope with high salt levels; however, all but one mutation (M258I/M225I) showed differences in the efficiency of cell growth and sodium efflux. Our findings showed that, although very similar in sequence, NuoL and MrpA seem to differ on the functional level. Nonetheless the studied mutations gave rise to interesting phenotypes which are of interest in complex I research.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
11
issue
7
article number
e0158972
publisher
Public Library of Science (PLoS)
external identifiers
  • scopus:84978705875
  • pmid:27391676
  • wos:000380005400176
ISSN
1932-6203
DOI
10.1371/journal.pone.0158972
language
English
LU publication?
yes
id
3925875b-9b2c-4e4d-9ff9-ed979aec8924
date added to LUP
2016-08-17 16:50:51
date last changed
2024-05-17 10:39:53
@article{3925875b-9b2c-4e4d-9ff9-ed979aec8924,
  abstract     = {{<p>It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN) of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD) from a Na<sup>+</sup> /H<sup>+</sup> antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid residues in helix VIII, which are only conserved in NuoL and MrpA (but not in any of the other antiporter-like subunits.) and to compare their effect on the function of these two proteins. By combining complementation studies in B. subtilis and <sup>23</sup>Na-NMR, response of mutants to high sodium levels were tested. All of the mutants were able to cope with high salt levels; however, all but one mutation (M258I/M225I) showed differences in the efficiency of cell growth and sodium efflux. Our findings showed that, although very similar in sequence, NuoL and MrpA seem to differ on the functional level. Nonetheless the studied mutations gave rise to interesting phenotypes which are of interest in complex I research.</p>}},
  author       = {{Sperling, Eva and Górecki, Kamil and Drakenberg, Torbjörn and Hägerhäll, Cecilia}},
  issn         = {{1932-6203}},
  language     = {{eng}},
  month        = {{07}},
  number       = {{7}},
  publisher    = {{Public Library of Science (PLoS)}},
  series       = {{PLoS ONE}},
  title        = {{Functional differentiation of antiporter-like polypeptides in complex I; a site-directed mutagenesis study of residues conserved in MrpA and NuoL but Not in MrpD, NuoM, and NuoN}},
  url          = {{http://dx.doi.org/10.1371/journal.pone.0158972}},
  doi          = {{10.1371/journal.pone.0158972}},
  volume       = {{11}},
  year         = {{2016}},
}