Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Switching ON Fetal B Lymphopoiesis

Kristiansen, Trine LU (2018) In Lund University, Faculty of Medicine Doctoral Dissertation Series 2018(73).
Abstract
B-1a cells are innate-like lymphocytes that develop primarily during fetal and neonatal life, whereas adult bone marrow (BM) hematopoietic stem cells (HSCs) preferentially give rise to follicular B-2 cells. Functioning at the interface of the innate and adaptive immune systems, B-1a cells provide a non-redundant first line of defense prior to the temporally delayed establishment of a B-2 cell response. The underlying causes for the developmental attenuation in B-1a potential remain poorly resolved. HSCs undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. The timing of this switch around 3 weeks of age correlates with the change in B cell output from B-1a potent to... (More)
B-1a cells are innate-like lymphocytes that develop primarily during fetal and neonatal life, whereas adult bone marrow (BM) hematopoietic stem cells (HSCs) preferentially give rise to follicular B-2 cells. Functioning at the interface of the innate and adaptive immune systems, B-1a cells provide a non-redundant first line of defense prior to the temporally delayed establishment of a B-2 cell response. The underlying causes for the developmental attenuation in B-1a potential remain poorly resolved. HSCs undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. The timing of this switch around 3 weeks of age correlates with the change in B cell output from B-1a potent to predominantly B-2 restricted.
We hypothesized that the cellular basis for this developmental attenuation in B-1a cell output is a consequence of a shift in stem cell state during ontogeny. Using cellular barcoding for in vivo single-cell resolution analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. To directly assess whether a developmental shift in HSC state can lead to a selective loss in B-1a potential on a per cell basis, we performed longitudinal comparison of repopulation potential by following barcoded founder cells across serial transplantations. Whereas B-1a potential diminished over time, B-2 output was maintained. B-1a potential could be reinitiated in a subset of adult HSCs by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis. This coincided with the clonal reversal to a fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate that the developmental decline in regenerative potential represents a reversible HSC state.
While these data made clear that developmentally restricted hematopoietic origins cannot fully account for the postnatal decline in B-1a output, the underlying mechanism for the positive selection and output of B-1a cells remains elusive. Recent studies showed that ectopic expression of Lin28b in adult pro-B cells was sufficient to potentiate fetal-like B-1a cell output. This led us to next hypothesize that Lin28b may play an important role during the latter part of B lymphopoiesis to potentiate the positive selection of B-1a cells early in life. We showed that CD5 levels of B-1 cells are developmentally set in the immature B cell stage and correlates with self-reactivity. Genetic perturbation studies show that Lin28b is necessary and sufficient for efficient positive selection of B-1a cells and potentiates neonatal immature B cell CD5 expression in a dose dependent fashion. Importantly, our results uncouple positive selection from specific B cell receptor identities, implicating the heterochronic RNA-binding protein LIN28b as the missing link that regulates the developmental attenuation in B-1a cell output through relaxing the permissiveness of B cell selection. Our findings shed light on the unique ability of B-1a cells to escape tolerance and undergo T cell like positive selection.
Finally, with ongoing investigations of developmental changes in chromatin accessibility between fetal and adult HSCs we have started to dissect the layers in regulation of a fetal HSC state. Interestingly, we find that regulation of the fetal HSC transcriptome relies more on a post-transcriptional layer compared to adult HSCs. This is consistent with the fetal specific expression pattern of the post-transcriptional regulator Lin28b.
Collectively this thesis work has elucidated fetal HSC state and Lin28b associated mechanisms in the attenuation of B-1a cell output during the transition from fetal to adult B lymphopoiesis. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • professor Cumano, Ana, Paris
organization
publishing date
type
Thesis
publication status
published
subject
keywords
B-1 B cells, Lin28, Fetal hematopoietic stem cells
in
Lund University, Faculty of Medicine Doctoral Dissertation Series
volume
2018
issue
73
pages
75 pages
publisher
Lund University, Faculty of Medicine
defense location
Segerfalksalen, BMC A10, Sölvegatan 17 i Lund
defense date
2018-05-24 09:00:00
ISSN
1652-8220
ISBN
978-91-7619-639-7
language
English
LU publication?
yes
additional info
ISSN: 1652-8220 Lund University, Faculty of Medicine Doctoral Dissertation Series 2018:73
id
39628366-ea68-464d-b9d1-a05076883779
date added to LUP
2018-05-02 12:29:50
date last changed
2025-10-21 13:04:47
@phdthesis{39628366-ea68-464d-b9d1-a05076883779,
  abstract     = {{B-1a cells are innate-like lymphocytes that develop primarily during fetal and neonatal life, whereas adult bone marrow (BM) hematopoietic stem cells (HSCs) preferentially give rise to follicular B-2 cells. Functioning at the interface of the innate and adaptive immune systems, B-1a cells provide a non-redundant first line of defense prior to the temporally delayed establishment of a B-2 cell response. The underlying causes for the developmental attenuation in B-1a potential remain poorly resolved. HSCs undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. The timing of this switch around 3 weeks of age correlates with the change in B cell output from B-1a potent to predominantly B-2 restricted. <br/>We hypothesized that the cellular basis for this developmental attenuation in B-1a cell output is a consequence of a shift in stem cell state during ontogeny. Using cellular barcoding for in vivo single-cell resolution analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. To directly assess whether a developmental shift in HSC state can lead to a selective loss in B-1a potential on a per cell basis, we performed longitudinal comparison of repopulation potential by following barcoded founder cells across serial transplantations. Whereas B-1a potential diminished over time, B-2 output was maintained. B-1a potential could be reinitiated in a subset of adult HSCs by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis. This coincided with the clonal reversal to a fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate that the developmental decline in regenerative potential represents a reversible HSC state. <br/>While these data made clear that developmentally restricted hematopoietic origins cannot fully account for the postnatal decline in B-1a output, the underlying mechanism for the positive selection and output of B-1a cells remains elusive. Recent studies showed that ectopic expression of Lin28b in adult pro-B cells was sufficient to potentiate fetal-like B-1a cell output. This led us to next hypothesize that Lin28b may play an important role during the latter part of B lymphopoiesis to potentiate the positive selection of B-1a cells early in life. We showed that CD5 levels of B-1 cells are developmentally set in the immature B cell stage and correlates with self-reactivity. Genetic perturbation studies show that Lin28b is necessary and sufficient for efficient positive selection of B-1a cells and potentiates neonatal immature B cell CD5 expression in a dose dependent fashion. Importantly, our results uncouple positive selection from specific B cell receptor identities, implicating the heterochronic RNA-binding protein LIN28b as the missing link that regulates the developmental attenuation in B-1a cell output through relaxing the permissiveness of B cell selection. Our findings shed light on the unique ability of B-1a cells to escape tolerance and undergo T cell like positive selection.<br/>Finally, with ongoing investigations of developmental changes in chromatin accessibility between fetal and adult HSCs we have started to dissect the layers in regulation of a fetal HSC state. Interestingly, we find that regulation of the fetal HSC transcriptome relies more on a post-transcriptional layer compared to adult HSCs. This is consistent with the fetal specific expression pattern of the post-transcriptional regulator Lin28b. <br/>Collectively this thesis work has elucidated fetal HSC state and Lin28b associated mechanisms in the attenuation of B-1a cell output during the transition from fetal to adult B lymphopoiesis.}},
  author       = {{Kristiansen, Trine}},
  isbn         = {{978-91-7619-639-7}},
  issn         = {{1652-8220}},
  keywords     = {{B-1 B cells; Lin28; Fetal hematopoietic stem cells}},
  language     = {{eng}},
  number       = {{73}},
  publisher    = {{Lund University, Faculty of Medicine}},
  school       = {{Lund University}},
  series       = {{Lund University, Faculty of Medicine Doctoral Dissertation Series}},
  title        = {{Switching ON Fetal B Lymphopoiesis}},
  url          = {{https://lup.lub.lu.se/search/files/42490856/TAK_Kappa.pdf}},
  volume       = {{2018}},
  year         = {{2018}},
}