The importance of age-related decline in forest NPP for modeling regional carbon balances
(2006) In Ecological Applications 16(4). p.1555-1574- Abstract
- We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with, tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates... (More)
- We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with, tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities-on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/397493
- author
- Zaehle, Soenke ; Sitch, Stephen ; Prentice, Colin ; Liski, Jari ; Cramer, Wolfgang ; Erhard, Markus ; Hickler, Thomas LU and Smith, Benjamin LU
- organization
- publishing date
- 2006
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Magnani hypothesis, Lund-Potsdam-Jena model (LPJ), age-related decline, forest management, modeling, terrestrial biosphere, plant hydraulic architecture
- in
- Ecological Applications
- volume
- 16
- issue
- 4
- pages
- 1555 - 1574
- publisher
- Ecological Society of America
- external identifiers
-
- wos:000239726700025
- scopus:33747123330
- ISSN
- 1051-0761
- DOI
- 10.1890/1051-0761(2006)016[1555:TIOADI]2.0.CO;2
- language
- English
- LU publication?
- yes
- id
- 66457471-39c5-4a8c-a855-f2ffd3ed14a0 (old id 397493)
- date added to LUP
- 2016-04-01 15:51:03
- date last changed
- 2022-04-22 17:49:20
@article{66457471-39c5-4a8c-a855-f2ffd3ed14a0, abstract = {{We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with, tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities-on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.}}, author = {{Zaehle, Soenke and Sitch, Stephen and Prentice, Colin and Liski, Jari and Cramer, Wolfgang and Erhard, Markus and Hickler, Thomas and Smith, Benjamin}}, issn = {{1051-0761}}, keywords = {{Magnani hypothesis; Lund-Potsdam-Jena model (LPJ); age-related decline; forest management; modeling; terrestrial biosphere; plant hydraulic architecture}}, language = {{eng}}, number = {{4}}, pages = {{1555--1574}}, publisher = {{Ecological Society of America}}, series = {{Ecological Applications}}, title = {{The importance of age-related decline in forest NPP for modeling regional carbon balances}}, url = {{http://dx.doi.org/10.1890/1051-0761(2006)016[1555:TIOADI]2.0.CO;2}}, doi = {{10.1890/1051-0761(2006)016[1555:TIOADI]2.0.CO;2}}, volume = {{16}}, year = {{2006}}, }