Advanced

Conceptual Design of a Mid-Sized Semi-Closed Oxy-Fuel Combustion Combined Cycle

Sammak, Majed LU ; Jonshagen, Klas LU ; Thern, Marcus LU ; Genrup, Magnus LU ; Thorbergsson, Egill; Gronstedt, Tomas and Dahlquist, Adrian (2012) ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition In Proceedings of the Asme Turbo Expo 2011, Vol 4 4. p.253-261
Abstract
This paper presents the study of a mid-sized semi-closed oxy-fuel combustion combined cycle (SCOC-CC) with net power output around 108 MW. The paper describes not only the power balance and the performance of the SCOC-CC, but also the conceptual design of the SCOC turbine and compressor. A model has been built in the commercial heat and mass balance code IPSEpro to estimate the efficiency of semi-closed dual-pressure oxy-fuel combustion combined cycle using natural gas as a fuel. In order to obtain the real physical properties of the working fluids in IPSEpro, the code was linked to the NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). The oxy-fuel turbine was modeled with the in-house Lund University package... (More)
This paper presents the study of a mid-sized semi-closed oxy-fuel combustion combined cycle (SCOC-CC) with net power output around 108 MW. The paper describes not only the power balance and the performance of the SCOC-CC, but also the conceptual design of the SCOC turbine and compressor. A model has been built in the commercial heat and mass balance code IPSEpro to estimate the efficiency of semi-closed dual-pressure oxy-fuel combustion combined cycle using natural gas as a fuel. In order to obtain the real physical properties of the working fluids in IPSEpro, the code was linked to the NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). The oxy-fuel turbine was modeled with the in-house Lund University package LUAX-T. Important features such as stage loading, loss modeling, cooling and geometric features were included to generate more accurate results. The oxy-fuel compressor has been modeled using a Chalmers university in-house tool for conceptual design of axial compressors. The conceptual design of the SCOC-CC process has a net efficiency of 47 %. The air separation unit and CO2 compression reduce the cycle efficiency by 10 and 2 percentage points, respectively. A single-shaft configuration was selected for the gas turbine simplicity. The rotational speed chosen was 5200 rpm and the turbine was designed with four stages. All stage preliminary design parameters are within ranges of established industrial axial turbine design limits. The main issue is the turbine exit Mach number; the stage must be lightly loaded in terms of pressure ratio to maintain the exit Mach number below 0.6. The compressor is designed with 18 stages. The current value of the product of the annulus area and the blade rotational speed squared (AN(2)) was calculated and found to be 40.10(6). (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
keywords
SCOC-CC, Oxy fuel, gas turbine, mid-sized dual pressure combined cycle, CO2
in
Proceedings of the Asme Turbo Expo 2011, Vol 4
volume
4
pages
253 - 261
publisher
American Society Of Mechanical Engineers (ASME)
conference name
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
external identifiers
  • wos:000320677400025
  • scopus:84865464593
ISBN
978-0-7918-5464-8
DOI
10.1115/GT2011-46299
language
English
LU publication?
yes
id
0dd6170e-dc12-4e90-a635-c6f4543c4de1 (old id 3979494)
date added to LUP
2013-09-03 13:18:59
date last changed
2017-03-12 04:27:02
@inproceedings{0dd6170e-dc12-4e90-a635-c6f4543c4de1,
  abstract     = {This paper presents the study of a mid-sized semi-closed oxy-fuel combustion combined cycle (SCOC-CC) with net power output around 108 MW. The paper describes not only the power balance and the performance of the SCOC-CC, but also the conceptual design of the SCOC turbine and compressor. A model has been built in the commercial heat and mass balance code IPSEpro to estimate the efficiency of semi-closed dual-pressure oxy-fuel combustion combined cycle using natural gas as a fuel. In order to obtain the real physical properties of the working fluids in IPSEpro, the code was linked to the NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). The oxy-fuel turbine was modeled with the in-house Lund University package LUAX-T. Important features such as stage loading, loss modeling, cooling and geometric features were included to generate more accurate results. The oxy-fuel compressor has been modeled using a Chalmers university in-house tool for conceptual design of axial compressors. The conceptual design of the SCOC-CC process has a net efficiency of 47 %. The air separation unit and CO2 compression reduce the cycle efficiency by 10 and 2 percentage points, respectively. A single-shaft configuration was selected for the gas turbine simplicity. The rotational speed chosen was 5200 rpm and the turbine was designed with four stages. All stage preliminary design parameters are within ranges of established industrial axial turbine design limits. The main issue is the turbine exit Mach number; the stage must be lightly loaded in terms of pressure ratio to maintain the exit Mach number below 0.6. The compressor is designed with 18 stages. The current value of the product of the annulus area and the blade rotational speed squared (AN(2)) was calculated and found to be 40.10(6).},
  author       = {Sammak, Majed and Jonshagen, Klas and Thern, Marcus and Genrup, Magnus and Thorbergsson, Egill and Gronstedt, Tomas and Dahlquist, Adrian},
  booktitle    = {Proceedings of the Asme Turbo Expo 2011, Vol 4},
  isbn         = {978-0-7918-5464-8},
  keyword      = {SCOC-CC,Oxy fuel,gas turbine,mid-sized dual pressure combined cycle,CO2},
  language     = {eng},
  pages        = {253--261},
  publisher    = {American Society Of Mechanical Engineers (ASME)},
  title        = {Conceptual Design of a Mid-Sized Semi-Closed Oxy-Fuel Combustion Combined Cycle},
  url          = {http://dx.doi.org/10.1115/GT2011-46299},
  volume       = {4},
  year         = {2012},
}