Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Simulation of titicaca lake water level fluctuations using hybrid machine learning technique integrated with grey wolf optimizer algorithm

Mohammadi, Babak LU orcid ; Guan, Yiqing ; Aghelpour, Pouya ; Emamgholizadeh, Samad ; Zolá, Ramiro Pillco LU and Zhang, Danrong (2020) In Water 12(11). p.1-18
Abstract

Lakes have an important role in storing water for drinking, producing hydroelectric power, and environmental, agricultural, and industrial uses. In order to optimize the use of lakes, precise prediction of the lake water level (LWL) is a main issue in water resources management. Due to the existence of nonlinear relations, uncertainty, and characteristics of the time series variables, the exact prediction of the lake water leveAl is difficult. In this study the hybrid support vector regression (SVR) and the grey wolf algorithm (GWO) are used to predict lake water level fluctuations. Also, three types of data preprocessing methods, namely Principal component analysis, Random forest, and Relief algorithm were used for finding the best... (More)

Lakes have an important role in storing water for drinking, producing hydroelectric power, and environmental, agricultural, and industrial uses. In order to optimize the use of lakes, precise prediction of the lake water level (LWL) is a main issue in water resources management. Due to the existence of nonlinear relations, uncertainty, and characteristics of the time series variables, the exact prediction of the lake water leveAl is difficult. In this study the hybrid support vector regression (SVR) and the grey wolf algorithm (GWO) are used to predict lake water level fluctuations. Also, three types of data preprocessing methods, namely Principal component analysis, Random forest, and Relief algorithm were used for finding the best input variables for prediction LWL by the SVR and SVR-GWO models. Before the LWL simulation on monthly time step using the hybrid model, an evolutionary approach based on different monthly lags was conducted for determining the best mask of the input variables. Results showed that based on the random forest method, the best scenario of the inputs was Xt−1, Xt−2, Xt−3, Xt−4 for the SVR-GWO model. Also, the performance of the SVR-GWO model indicated that it could simulate the LWL with acceptable accuracy (with RMSE = 0.08 m, MAE = 0.06 m, and R2 = 0.96).

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Data-driven techniques, Hybrid model, Lake water level, Prediction, Support vector regression, Titicaca Lake
in
Water
volume
12
issue
11
article number
3015
pages
18 pages
publisher
MDPI AG
external identifiers
  • scopus:85095971887
ISSN
2073-4441
DOI
10.3390/w12113015
language
English
LU publication?
no
id
3c68dacd-cb1a-4eda-99f8-35b207b3ebe2
date added to LUP
2020-12-30 05:07:12
date last changed
2022-04-26 22:52:49
@article{3c68dacd-cb1a-4eda-99f8-35b207b3ebe2,
  abstract     = {{<p>Lakes have an important role in storing water for drinking, producing hydroelectric power, and environmental, agricultural, and industrial uses. In order to optimize the use of lakes, precise prediction of the lake water level (LWL) is a main issue in water resources management. Due to the existence of nonlinear relations, uncertainty, and characteristics of the time series variables, the exact prediction of the lake water leveAl is difficult. In this study the hybrid support vector regression (SVR) and the grey wolf algorithm (GWO) are used to predict lake water level fluctuations. Also, three types of data preprocessing methods, namely Principal component analysis, Random forest, and Relief algorithm were used for finding the best input variables for prediction LWL by the SVR and SVR-GWO models. Before the LWL simulation on monthly time step using the hybrid model, an evolutionary approach based on different monthly lags was conducted for determining the best mask of the input variables. Results showed that based on the random forest method, the best scenario of the inputs was X<sub>t−1</sub>, X<sub>t−2</sub>, X<sub>t−3</sub>, X<sub>t−4</sub> for the SVR-GWO model. Also, the performance of the SVR-GWO model indicated that it could simulate the LWL with acceptable accuracy (with RMSE = 0.08 m, MAE = 0.06 m, and R<sup>2</sup> = 0.96).</p>}},
  author       = {{Mohammadi, Babak and Guan, Yiqing and Aghelpour, Pouya and Emamgholizadeh, Samad and Zolá, Ramiro Pillco and Zhang, Danrong}},
  issn         = {{2073-4441}},
  keywords     = {{Data-driven techniques; Hybrid model; Lake water level; Prediction; Support vector regression; Titicaca Lake}},
  language     = {{eng}},
  number       = {{11}},
  pages        = {{1--18}},
  publisher    = {{MDPI AG}},
  series       = {{Water}},
  title        = {{Simulation of titicaca lake water level fluctuations using hybrid machine learning technique integrated with grey wolf optimizer algorithm}},
  url          = {{http://dx.doi.org/10.3390/w12113015}},
  doi          = {{10.3390/w12113015}},
  volume       = {{12}},
  year         = {{2020}},
}