Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The use of X-ray diffraction measurements to determine the effect of bending loads on internal stresses in aluminum inclusions embedded in unidirectional graphite-fibre/PMR-15 composite

Benedikt, B. ; Predecki, P. ; Kumosa, L. LU ; Armentrout, D. ; Sutter, J. K. and Kumosa, M. (2001) In Composites Science and Technology 61(14). p.1995-2006
Abstract

A testing methodology for the determination of residual thermal stresses in the polymer-matrix of unidirectional polymer-matrix composites has been proposed in Ref. [1] [Benedikt B, Kumosa M, Predecki PK, Kumosa L, Castelli MG, Sutter JK. An analysis of residual thermal stresses in a unidirectional graphite/PMR-15 composite based on the X-ray diffraction measurements. Composites Science and Technology (in press)]. The methodology is based X-ray diffraction (XRD) measurements of residual strains in embedded metallic particles. The residual stresses in the polymer matrix can be extracted from the X-ray strains in the particles using the visco-elastic Eshelby method for multiple inclusions. The purpose of this work has been to show that... (More)

A testing methodology for the determination of residual thermal stresses in the polymer-matrix of unidirectional polymer-matrix composites has been proposed in Ref. [1] [Benedikt B, Kumosa M, Predecki PK, Kumosa L, Castelli MG, Sutter JK. An analysis of residual thermal stresses in a unidirectional graphite/PMR-15 composite based on the X-ray diffraction measurements. Composites Science and Technology (in press)]. The methodology is based X-ray diffraction (XRD) measurements of residual strains in embedded metallic particles. The residual stresses in the polymer matrix can be extracted from the X-ray strains in the particles using the visco-elastic Eshelby method for multiple inclusions. The purpose of this work has been to show that the newly developed experimental/analytical methodology can also be applied to composites subjected to external loads, in this case: spherical aluminum particles embedded in a unidirectional graphite/PMR-15 composite subjected to four-point bending loads. The total stresses and strains in the aluminum particles caused by residual thermal stresses in the composite and the applied stresses generated by four-point bending have been determined by XRD measurements under low bending displacements. Subsequently, the total strains and stresses in the aluminum particles have been numerically predicted by applying elastic and visco-elastic laminate theories and the Eshelby method. It has been shown in this research that not only the residual thermal strains and stresses in the aluminum particles and the matrix can be determined by using the proposed technique but also the effect of external loads on the stresses and strains in the particles can be monitored. This research has provided another verification of the newly proposed methodology presented in Ref. [1].

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
in
Composites Science and Technology
volume
61
issue
14
pages
1995 - 2006
publisher
Elsevier
external identifiers
  • scopus:0035499592
ISSN
0266-3538
DOI
10.1016/S0266-3538(01)00105-1
language
English
LU publication?
no
id
3dd88a4f-d199-4f3a-aaa4-e6e9ce2d35e5
date added to LUP
2022-11-26 13:37:48
date last changed
2022-11-28 09:39:14
@article{3dd88a4f-d199-4f3a-aaa4-e6e9ce2d35e5,
  abstract     = {{<p>A testing methodology for the determination of residual thermal stresses in the polymer-matrix of unidirectional polymer-matrix composites has been proposed in Ref. [1] [Benedikt B, Kumosa M, Predecki PK, Kumosa L, Castelli MG, Sutter JK. An analysis of residual thermal stresses in a unidirectional graphite/PMR-15 composite based on the X-ray diffraction measurements. Composites Science and Technology (in press)]. The methodology is based X-ray diffraction (XRD) measurements of residual strains in embedded metallic particles. The residual stresses in the polymer matrix can be extracted from the X-ray strains in the particles using the visco-elastic Eshelby method for multiple inclusions. The purpose of this work has been to show that the newly developed experimental/analytical methodology can also be applied to composites subjected to external loads, in this case: spherical aluminum particles embedded in a unidirectional graphite/PMR-15 composite subjected to four-point bending loads. The total stresses and strains in the aluminum particles caused by residual thermal stresses in the composite and the applied stresses generated by four-point bending have been determined by XRD measurements under low bending displacements. Subsequently, the total strains and stresses in the aluminum particles have been numerically predicted by applying elastic and visco-elastic laminate theories and the Eshelby method. It has been shown in this research that not only the residual thermal strains and stresses in the aluminum particles and the matrix can be determined by using the proposed technique but also the effect of external loads on the stresses and strains in the particles can be monitored. This research has provided another verification of the newly proposed methodology presented in Ref. [1].</p>}},
  author       = {{Benedikt, B. and Predecki, P. and Kumosa, L. and Armentrout, D. and Sutter, J. K. and Kumosa, M.}},
  issn         = {{0266-3538}},
  language     = {{eng}},
  number       = {{14}},
  pages        = {{1995--2006}},
  publisher    = {{Elsevier}},
  series       = {{Composites Science and Technology}},
  title        = {{The use of X-ray diffraction measurements to determine the effect of bending loads on internal stresses in aluminum inclusions embedded in unidirectional graphite-fibre/PMR-15 composite}},
  url          = {{http://dx.doi.org/10.1016/S0266-3538(01)00105-1}},
  doi          = {{10.1016/S0266-3538(01)00105-1}},
  volume       = {{61}},
  year         = {{2001}},
}