Advanced

InP/GaInP nanowire tunnel diodes

Zeng, Xulu LU ; Otnes, Gaute LU ; Heurlin, Magnus LU ; Mourão, Renato T. and Borgström, Magnus T. LU (2017) In Nano Research
Abstract

Semiconductor nanowire (NW) solar cells with a single p-n junction have exhibited efficiency comparable to that of their planar counterparts with a substantial reduction in material consumption. Tandem geometry is a path toward the fabrication of devices with even higher efficiencies, for which a key step is the fabrication of tunnel (Esaki) diodes within NWs with the correct diameter, pitch, and material combination for maximized efficiency. InP/GaInP and GaInP/InP NW tunnel diodes with band gap combinations corresponding to high-efficiency solar energy harvesting were fabricated and their electrical characteristics and material properties were compared. Four different configurations, with respect to material composition and doping,... (More)

Semiconductor nanowire (NW) solar cells with a single p-n junction have exhibited efficiency comparable to that of their planar counterparts with a substantial reduction in material consumption. Tandem geometry is a path toward the fabrication of devices with even higher efficiencies, for which a key step is the fabrication of tunnel (Esaki) diodes within NWs with the correct diameter, pitch, and material combination for maximized efficiency. InP/GaInP and GaInP/InP NW tunnel diodes with band gap combinations corresponding to high-efficiency solar energy harvesting were fabricated and their electrical characteristics and material properties were compared. Four different configurations, with respect to material composition and doping, were investigated. The NW arrays were grown with metal–organic vapor-phase epitaxy from Au particles by use of nano-imprint lithography, metal evaporation and lift-off. Electrical measurements showed that the NWs behave as tunnel diodes in both InP (bottom)/GaInP (top) and GaInP (bottom)/InP (top) configurations, exhibiting a maximum peak current density of 25 A/cm2, and maximum peak to valley current ratio of 2.5 at room temperature. The realization of NW tunnel diodes in both InP/GaInP and GaInP/InP configurations represent an opportunity for the use of NW tandem solar cells, whose efficiency is independent of the growth order of the different materials, increasing the flexibility regarding dopant incorporation polarity. [Figure not available: see fulltext.]

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
epub
subject
keywords
GaInP, InP, nanowire, tandem junction solar cell, tunnel diode
in
Nano Research
pages
9 pages
publisher
Springer
external identifiers
  • scopus:85033468033
ISSN
1998-0124
DOI
10.1007/s12274-017-1877-8
language
English
LU publication?
yes
id
3e198353-3670-4b15-b85f-c165b62ca25e
date added to LUP
2017-11-20 12:35:46
date last changed
2018-05-20 04:38:52
@article{3e198353-3670-4b15-b85f-c165b62ca25e,
  abstract     = {<p>Semiconductor nanowire (NW) solar cells with a single p-n junction have exhibited efficiency comparable to that of their planar counterparts with a substantial reduction in material consumption. Tandem geometry is a path toward the fabrication of devices with even higher efficiencies, for which a key step is the fabrication of tunnel (Esaki) diodes within NWs with the correct diameter, pitch, and material combination for maximized efficiency. InP/GaInP and GaInP/InP NW tunnel diodes with band gap combinations corresponding to high-efficiency solar energy harvesting were fabricated and their electrical characteristics and material properties were compared. Four different configurations, with respect to material composition and doping, were investigated. The NW arrays were grown with metal–organic vapor-phase epitaxy from Au particles by use of nano-imprint lithography, metal evaporation and lift-off. Electrical measurements showed that the NWs behave as tunnel diodes in both InP (bottom)/GaInP (top) and GaInP (bottom)/InP (top) configurations, exhibiting a maximum peak current density of 25 A/cm<sup>2</sup>, and maximum peak to valley current ratio of 2.5 at room temperature. The realization of NW tunnel diodes in both InP/GaInP and GaInP/InP configurations represent an opportunity for the use of NW tandem solar cells, whose efficiency is independent of the growth order of the different materials, increasing the flexibility regarding dopant incorporation polarity. [Figure not available: see fulltext.]</p>},
  author       = {Zeng, Xulu and Otnes, Gaute and Heurlin, Magnus and Mourão, Renato T. and Borgström, Magnus T.},
  issn         = {1998-0124},
  keyword      = {GaInP,InP,nanowire,tandem junction solar cell,tunnel diode},
  language     = {eng},
  month        = {11},
  pages        = {9},
  publisher    = {Springer},
  series       = {Nano Research},
  title        = {InP/GaInP nanowire tunnel diodes},
  url          = {http://dx.doi.org/10.1007/s12274-017-1877-8},
  year         = {2017},
}