Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Improving the instrumental resolution of sensors based on localized surface plasmon resonance

Dahlin, Andreas LU ; Tegenfeldt, Jonas LU orcid and Höök, Fredrik LU (2006) In Analytical Chemistry 78(13). p.4416-4423
Abstract
The colorimetric variations induced upon changes in interfacial refractive index of nanoscale noble metal structures exhibiting localized surface plasmon resonance (LSPR) provides a convenient means of label-free, affinity-based detection of biomolecular recognition reactions. However, despite being similar in nature to conventional SPR, LSPR has so far suffered from significantly lower data quality in terms of its signal-to-noise ratio (S/N) in typical biomolecular recognition analysis. In this work, generic data analysis algorithms and a simple experimental setup that provide a S/N upon protein binding that is comparable to that of state-of-the art SPR systems are presented. Specifically, it is demonstrated how temporal variations ( rate... (More)
The colorimetric variations induced upon changes in interfacial refractive index of nanoscale noble metal structures exhibiting localized surface plasmon resonance (LSPR) provides a convenient means of label-free, affinity-based detection of biomolecular recognition reactions. However, despite being similar in nature to conventional SPR, LSPR has so far suffered from significantly lower data quality in terms of its signal-to-noise ratio (S/N) in typical biomolecular recognition analysis. In this work, generic data analysis algorithms and a simple experimental setup that provide a S/N upon protein binding that is comparable to that of state-of-the art SPR systems are presented. Specifically, it is demonstrated how temporal variations ( rate similar to 0.5 Hz) in parameters proportional to the resonance peak position can be recorded simultaneously, yielding a peak position precision of < 5 x 10(-4) nm and an extinction noise level of < 5 x 10(-6) absorbance units (Abs). This, in turn, is shown to provide a S/N of similar to 2000 ( equivalent to a detection limit of < 0.1 ng/cm(2)) for typical protein binding reactions. Furthermore, the importance of utilizing changes in both peak position and magnitude is highlighted by comparing different LSPR active noble metal architectures that respond differently to bulk and interfacial refractive index changes. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Analytical Chemistry
volume
78
issue
13
pages
4416 - 4423
publisher
The American Chemical Society (ACS)
external identifiers
  • wos:000238665200027
  • scopus:33745700439
ISSN
1520-6882
DOI
10.1021/ac0601967
language
English
LU publication?
yes
id
4f65a1da-8030-4aa8-9d73-8d763176fc03 (old id 404687)
date added to LUP
2016-04-01 12:09:19
date last changed
2022-03-28 21:02:03
@article{4f65a1da-8030-4aa8-9d73-8d763176fc03,
  abstract     = {{The colorimetric variations induced upon changes in interfacial refractive index of nanoscale noble metal structures exhibiting localized surface plasmon resonance (LSPR) provides a convenient means of label-free, affinity-based detection of biomolecular recognition reactions. However, despite being similar in nature to conventional SPR, LSPR has so far suffered from significantly lower data quality in terms of its signal-to-noise ratio (S/N) in typical biomolecular recognition analysis. In this work, generic data analysis algorithms and a simple experimental setup that provide a S/N upon protein binding that is comparable to that of state-of-the art SPR systems are presented. Specifically, it is demonstrated how temporal variations ( rate similar to 0.5 Hz) in parameters proportional to the resonance peak position can be recorded simultaneously, yielding a peak position precision of &lt; 5 x 10(-4) nm and an extinction noise level of &lt; 5 x 10(-6) absorbance units (Abs). This, in turn, is shown to provide a S/N of similar to 2000 ( equivalent to a detection limit of &lt; 0.1 ng/cm(2)) for typical protein binding reactions. Furthermore, the importance of utilizing changes in both peak position and magnitude is highlighted by comparing different LSPR active noble metal architectures that respond differently to bulk and interfacial refractive index changes.}},
  author       = {{Dahlin, Andreas and Tegenfeldt, Jonas and Höök, Fredrik}},
  issn         = {{1520-6882}},
  language     = {{eng}},
  number       = {{13}},
  pages        = {{4416--4423}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{Analytical Chemistry}},
  title        = {{Improving the instrumental resolution of sensors based on localized surface plasmon resonance}},
  url          = {{http://dx.doi.org/10.1021/ac0601967}},
  doi          = {{10.1021/ac0601967}},
  volume       = {{78}},
  year         = {{2006}},
}