Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Ab initio potential-energy surface and rovibrational states of the HCN-HCl complex

van der Avoird, A ; Pedersen, Thomas LU ; Dhont, GSF ; Fernandez, B and Koch, H (2006) In Journal of Chemical Physics 124(20).
Abstract
A four-dimensional intermolecular potential-energy surface has been calculated for the HCN-HCl complex, with the use of the coupled cluster method with single and double excitations and noniterative inclusion of triples. Data for more than 13 000 geometries were represented by an angular expansion in terms of coupled spherical harmonics; the dependence of the expansion coefficients on the intermolecular distance R was described by the reproducing kernel Hilbert space method. The global minimum with D-e=1565 cm(-1) and R-e=7.47a(0) has a linear HCN-HCl hydrogen-bonded structure with HCl as the donor. A secondary hydrogen-bonded equilibrium structure with D-e=564 cm(-1) and R-e=8.21a(0) has a T-shaped geometry with HCN as the donor and the... (More)
A four-dimensional intermolecular potential-energy surface has been calculated for the HCN-HCl complex, with the use of the coupled cluster method with single and double excitations and noniterative inclusion of triples. Data for more than 13 000 geometries were represented by an angular expansion in terms of coupled spherical harmonics; the dependence of the expansion coefficients on the intermolecular distance R was described by the reproducing kernel Hilbert space method. The global minimum with D-e=1565 cm(-1) and R-e=7.47a(0) has a linear HCN-HCl hydrogen-bonded structure with HCl as the donor. A secondary hydrogen-bonded equilibrium structure with D-e=564 cm(-1) and R-e=8.21a(0) has a T-shaped geometry with HCN as the donor and the acceptor HCl molecule nearly perpendicular to the intermolecular axis. This potential surface was used in a variational approach to compute a series of bound states of the isotopomers HCN-(HCl)-Cl-35, DCN-(HCl)-Cl-35, and HCN-(HCl)-Cl-37 for total angular momentum J=0,1,2 and spectroscopic parities e, f. The results could be analyzed in terms of the approximate quantum numbers of a linear polyatomic molecule with two coupled bend modes, plus a quantum number for the intermolecular stretch vibration. They are in good agreement with the recent high resolution spectrum of Larsen [Phys. Chem. Chem. Phys. 7, 1953 (2005)] in the region of 330 cm(-1) corresponding to the HCl libration. The (partly anomalous) effects of isotopic substitutions on the properties of the complex were explained with the aid of the calculations. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Chemical Physics
volume
124
issue
20
publisher
American Institute of Physics (AIP)
external identifiers
  • wos:000237944500037
  • scopus:34547926230
  • pmid:16774340
ISSN
0021-9606
DOI
10.1063/1.2200345
language
English
LU publication?
yes
additional info
The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Theoretical Chemistry (S) (011001039)
id
fc8ac689-e353-4ce5-9dfd-a79f8b80fcc5 (old id 407433)
date added to LUP
2016-04-01 12:11:07
date last changed
2023-01-03 05:01:26
@article{fc8ac689-e353-4ce5-9dfd-a79f8b80fcc5,
  abstract     = {{A four-dimensional intermolecular potential-energy surface has been calculated for the HCN-HCl complex, with the use of the coupled cluster method with single and double excitations and noniterative inclusion of triples. Data for more than 13 000 geometries were represented by an angular expansion in terms of coupled spherical harmonics; the dependence of the expansion coefficients on the intermolecular distance R was described by the reproducing kernel Hilbert space method. The global minimum with D-e=1565 cm(-1) and R-e=7.47a(0) has a linear HCN-HCl hydrogen-bonded structure with HCl as the donor. A secondary hydrogen-bonded equilibrium structure with D-e=564 cm(-1) and R-e=8.21a(0) has a T-shaped geometry with HCN as the donor and the acceptor HCl molecule nearly perpendicular to the intermolecular axis. This potential surface was used in a variational approach to compute a series of bound states of the isotopomers HCN-(HCl)-Cl-35, DCN-(HCl)-Cl-35, and HCN-(HCl)-Cl-37 for total angular momentum J=0,1,2 and spectroscopic parities e, f. The results could be analyzed in terms of the approximate quantum numbers of a linear polyatomic molecule with two coupled bend modes, plus a quantum number for the intermolecular stretch vibration. They are in good agreement with the recent high resolution spectrum of Larsen [Phys. Chem. Chem. Phys. 7, 1953 (2005)] in the region of 330 cm(-1) corresponding to the HCl libration. The (partly anomalous) effects of isotopic substitutions on the properties of the complex were explained with the aid of the calculations.}},
  author       = {{van der Avoird, A and Pedersen, Thomas and Dhont, GSF and Fernandez, B and Koch, H}},
  issn         = {{0021-9606}},
  language     = {{eng}},
  number       = {{20}},
  publisher    = {{American Institute of Physics (AIP)}},
  series       = {{Journal of Chemical Physics}},
  title        = {{Ab initio potential-energy surface and rovibrational states of the HCN-HCl complex}},
  url          = {{http://dx.doi.org/10.1063/1.2200345}},
  doi          = {{10.1063/1.2200345}},
  volume       = {{124}},
  year         = {{2006}},
}