Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A solubility and surface complexation study of a non-stoichiometric hydroxyapatite

Bengtsson, Asa ; Shchukarev, Andrei ; Persson, Per LU and Sjoberg, Staffan (2009) In Geochimica et Cosmochimica Acta 73. p.257-267
Abstract
The dissolution and surface complexation of a non-stoichiometric hydroxyapatite (Ca-8.4(HPO4)(1.6)(PO4)(4.4)(OH)(0.4)), (HAP) was studied in the pH range 3.5-10.5, at 25 degrees C in 0.1 M Na(Cl). The results from well-equilibrated batch experiments, potentiometric titrations, and zeta-potential measurements were combined with information provided by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The information from the analyses was used to design an equilibration model that takes into account dissolution, surface potential, solution and surface complexation, as well as possible phase transformations. The results from the XPS measurements clearly show that the... (More)
The dissolution and surface complexation of a non-stoichiometric hydroxyapatite (Ca-8.4(HPO4)(1.6)(PO4)(4.4)(OH)(0.4)), (HAP) was studied in the pH range 3.5-10.5, at 25 degrees C in 0.1 M Na(Cl). The results from well-equilibrated batch experiments, potentiometric titrations, and zeta-potential measurements were combined with information provided by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The information from the analyses was used to design an equilibration model that takes into account dissolution, surface potential, solution and surface complexation, as well as possible phase transformations. The results from the XPS measurements clearly show that the surface of the mineral has a different composition than the bulk and that the Ca/P ratio of the surface layer is 1.4 +/- 0.1. This ratio was also found in solution in the batches equilibrated at low pH where the dominating reaction is dissolution. In the batches equilibrated at near neutral pH values, however, the Ca/P ratio in solution attains values as high as 25, which is due to re-adsorption of phosphate ions to the HAP surface. The total concentration of protons as well as the total concentration of dissolved calcium and phosphate in solution were used to calculate a model for the dissolution and surface complexation of HAP. The constant capacitance model was applied in designing the following surface complexation model: CaOH + H+ reversible arrow CaOH2+ log beta(intr.) = 8.41 +/- 0.16 OPO3H2 reversible arrow OPO3H- + H+ log beta(intr.) = -1.11 +/- 0.13 CaOH + HPO42- + H+ reversible arrow CaOPO3H- + H2O log beta(intr.) = 11.63 +/- 0.15 OPO3H2 + Na+ reversible arrow OPO3Na- + 2H(+) log beta(intr.) = 11.08 +/- 0.12 In addition a solubility product with log beta = -23.27 +/- 0.29 was obtained: Ca-8.4(HPO4)(1.6) (PO4)(4.4)(OH)(0.4)(s) + 4.8H(+) reversible arrow 8.4Ca(2+) + 6HPO(4)(2-) + 0.4H(2)O Furthermore, this model predicts a pH(zpc) = 7.9, which is in agreement with pH(iep) = 8.1 obtained from zeta potential measurements. This model can be used as a helpful tool to predict the reactivity of HAP in different aquatic environments. (C) 2008 Elsevier Ltd. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
; ; and
publishing date
type
Contribution to journal
publication status
published
subject
in
Geochimica et Cosmochimica Acta
volume
73
pages
257 - 267
publisher
Elsevier
external identifiers
  • scopus:57749176650
ISSN
0016-7037
DOI
10.1016/j.gca.2008.09.034
language
English
LU publication?
no
additional info
2
id
4116ee48-e3f8-48a7-992a-b6c59b3607e9 (old id 4332376)
date added to LUP
2016-04-01 12:28:13
date last changed
2022-02-11 07:25:54
@article{4116ee48-e3f8-48a7-992a-b6c59b3607e9,
  abstract     = {{The dissolution and surface complexation of a non-stoichiometric hydroxyapatite (Ca-8.4(HPO4)(1.6)(PO4)(4.4)(OH)(0.4)), (HAP) was studied in the pH range 3.5-10.5, at 25 degrees C in 0.1 M Na(Cl). The results from well-equilibrated batch experiments, potentiometric titrations, and zeta-potential measurements were combined with information provided by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The information from the analyses was used to design an equilibration model that takes into account dissolution, surface potential, solution and surface complexation, as well as possible phase transformations. The results from the XPS measurements clearly show that the surface of the mineral has a different composition than the bulk and that the Ca/P ratio of the surface layer is 1.4 +/- 0.1. This ratio was also found in solution in the batches equilibrated at low pH where the dominating reaction is dissolution. In the batches equilibrated at near neutral pH values, however, the Ca/P ratio in solution attains values as high as 25, which is due to re-adsorption of phosphate ions to the HAP surface. The total concentration of protons as well as the total concentration of dissolved calcium and phosphate in solution were used to calculate a model for the dissolution and surface complexation of HAP. The constant capacitance model was applied in designing the following surface complexation model: CaOH + H+ reversible arrow CaOH2+ log beta(intr.) = 8.41 +/- 0.16 OPO3H2 reversible arrow OPO3H- + H+ log beta(intr.) = -1.11 +/- 0.13 CaOH + HPO42- + H+ reversible arrow CaOPO3H- + H2O log beta(intr.) = 11.63 +/- 0.15 OPO3H2 + Na+ reversible arrow OPO3Na- + 2H(+) log beta(intr.) = 11.08 +/- 0.12 In addition a solubility product with log beta = -23.27 +/- 0.29 was obtained: Ca-8.4(HPO4)(1.6) (PO4)(4.4)(OH)(0.4)(s) + 4.8H(+) reversible arrow 8.4Ca(2+) + 6HPO(4)(2-) + 0.4H(2)O Furthermore, this model predicts a pH(zpc) = 7.9, which is in agreement with pH(iep) = 8.1 obtained from zeta potential measurements. This model can be used as a helpful tool to predict the reactivity of HAP in different aquatic environments. (C) 2008 Elsevier Ltd. All rights reserved.}},
  author       = {{Bengtsson, Asa and Shchukarev, Andrei and Persson, Per and Sjoberg, Staffan}},
  issn         = {{0016-7037}},
  language     = {{eng}},
  pages        = {{257--267}},
  publisher    = {{Elsevier}},
  series       = {{Geochimica et Cosmochimica Acta}},
  title        = {{A solubility and surface complexation study of a non-stoichiometric hydroxyapatite}},
  url          = {{http://dx.doi.org/10.1016/j.gca.2008.09.034}},
  doi          = {{10.1016/j.gca.2008.09.034}},
  volume       = {{73}},
  year         = {{2009}},
}