Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Complexation and precipitation reactions in the ternary As(V)-Fe(III)-OM (organic matter) system

Sundman, Anneli ; Karlsson, Torbjorn ; Sjoberg, Staffan and Persson, Per LU (2014) In Geochimica et Cosmochimica Acta 145. p.297-314
Abstract
The predominant forms of arsenic (As) in anoxic and oxic environments are As(III) and As(V), respectively, and the fate of these forms is influenced by interactions with mineral surfaces and organic matter (OM). Interactions between As(V) and OM are believed to occur mainly via iron(Fe)-bridges in ternary Fe-arsenate complexes, but direct evidence for these interactions are scarce. Furthermore, since the speciation of Fe in the presence of organic matter varies as a function of pH and Fe concentration, a central question is how different chemical conditions will affect the As-Fe-OM interactions. In order to answer this, the As(V)-Fe(III)-OM system have been studied under a large range of experimental conditions (6485-67,243 ppm Fe(III) and... (More)
The predominant forms of arsenic (As) in anoxic and oxic environments are As(III) and As(V), respectively, and the fate of these forms is influenced by interactions with mineral surfaces and organic matter (OM). Interactions between As(V) and OM are believed to occur mainly via iron(Fe)-bridges in ternary Fe-arsenate complexes, but direct evidence for these interactions are scarce. Furthermore, since the speciation of Fe in the presence of organic matter varies as a function of pH and Fe concentration, a central question is how different chemical conditions will affect the As-Fe-OM interactions. In order to answer this, the As(V)-Fe(III)-OM system have been studied under a large range of experimental conditions (6485-67,243 ppm Fe(III) and Fe(III): As(V) ratios of 0.5-20 at pH 3-7), with Suwannee River natural organic matter and Suwannee River fulvic acid as sources of OM, using Fe and As K-edge X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy and chemical equilibrium modeling. Our collective results showed that interactions in the ternary As(V)-Fe(III)-OM system were strongly influenced by pH, total concentrations and ratios among the reactive species. In particular, the high stability of the Fe(III)-OM complexes exerted a strong control on the speciation. The predominant species identified were mononuclear Fe(III)-OM complexes, Fe(III) (hydr) oxides and FeAsO4 solids. The experimental results also showed that at low concentrations the Fe(III)-OM complexes were sufficiently stable to prevent reaction with arsenate. The chemical equilibrium models developed corroborated the spectroscopic results and indicated that As(V) was distributed over two solid phases, namely FeAsO4(s) and Fe(OH)(1.5)(AsO4)(0.5)(s). Thus, neither ternary As(V)-Fe(III)-OM complexes nor As(V) surface complexes on Fe(III) (hydr) oxides were necessary to explain the collective results presented in this study. (C) 2014 Elsevier Ltd. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Geochimica et Cosmochimica Acta
volume
145
pages
297 - 314
publisher
Elsevier
external identifiers
  • wos:000344945800016
  • scopus:84921860006
ISSN
0016-7037
DOI
10.1016/j.gca.2014.09.036
project
MICCS - Molecular Interactions Controlling soil Carbon Sequestration
language
English
LU publication?
yes
id
413b85e3-5d32-4a46-a0fc-3f39c7d6fa4b (old id 4982995)
date added to LUP
2016-04-01 10:01:54
date last changed
2022-04-19 21:54:39
@article{413b85e3-5d32-4a46-a0fc-3f39c7d6fa4b,
  abstract     = {{The predominant forms of arsenic (As) in anoxic and oxic environments are As(III) and As(V), respectively, and the fate of these forms is influenced by interactions with mineral surfaces and organic matter (OM). Interactions between As(V) and OM are believed to occur mainly via iron(Fe)-bridges in ternary Fe-arsenate complexes, but direct evidence for these interactions are scarce. Furthermore, since the speciation of Fe in the presence of organic matter varies as a function of pH and Fe concentration, a central question is how different chemical conditions will affect the As-Fe-OM interactions. In order to answer this, the As(V)-Fe(III)-OM system have been studied under a large range of experimental conditions (6485-67,243 ppm Fe(III) and Fe(III): As(V) ratios of 0.5-20 at pH 3-7), with Suwannee River natural organic matter and Suwannee River fulvic acid as sources of OM, using Fe and As K-edge X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy and chemical equilibrium modeling. Our collective results showed that interactions in the ternary As(V)-Fe(III)-OM system were strongly influenced by pH, total concentrations and ratios among the reactive species. In particular, the high stability of the Fe(III)-OM complexes exerted a strong control on the speciation. The predominant species identified were mononuclear Fe(III)-OM complexes, Fe(III) (hydr) oxides and FeAsO4 solids. The experimental results also showed that at low concentrations the Fe(III)-OM complexes were sufficiently stable to prevent reaction with arsenate. The chemical equilibrium models developed corroborated the spectroscopic results and indicated that As(V) was distributed over two solid phases, namely FeAsO4(s) and Fe(OH)(1.5)(AsO4)(0.5)(s). Thus, neither ternary As(V)-Fe(III)-OM complexes nor As(V) surface complexes on Fe(III) (hydr) oxides were necessary to explain the collective results presented in this study. (C) 2014 Elsevier Ltd. All rights reserved.}},
  author       = {{Sundman, Anneli and Karlsson, Torbjorn and Sjoberg, Staffan and Persson, Per}},
  issn         = {{0016-7037}},
  language     = {{eng}},
  pages        = {{297--314}},
  publisher    = {{Elsevier}},
  series       = {{Geochimica et Cosmochimica Acta}},
  title        = {{Complexation and precipitation reactions in the ternary As(V)-Fe(III)-OM (organic matter) system}},
  url          = {{http://dx.doi.org/10.1016/j.gca.2014.09.036}},
  doi          = {{10.1016/j.gca.2014.09.036}},
  volume       = {{145}},
  year         = {{2014}},
}