Advanced

Relativistic effects on the hyperfine structures of 2 p(4)(P-3)3 p D-2(o), D-4(o), and P-4(o) in F-19 I

Carette, Thomas ; Nemouchi, Messaoud ; Li, Jiguang LU and Godefroid, Michel (2013) In Physical Review A (Atomic, Molecular and Optical Physics) 88(4).
Abstract
The hyperfine interaction constants of the 2p(4)(P-3)3p D-2(3/2,5/2)o, D-4(1/2-7/2)o, and P-4(1/2-5/2)o levels in neutral fluorine are investigated theoretically. Large-scale calculations are carried out using the multiconfiguration Hartree-Fock (MCHF) and Dirac-Hartree-Fock (MCDHF) methods. In the framework of the MCHF approach, the relativistic effects are taken into account in the Breit-Pauli approximation using nonrelativistic orbitals. In the fully relativistic approach, the orbitals are optimized using the Dirac-Coulomb Hamiltonian with correlation models inspired by the nonrelativistic calculations. Higher-order excitations are captured through multireference configuration interaction calculations including the Breit interaction. In... (More)
The hyperfine interaction constants of the 2p(4)(P-3)3p D-2(3/2,5/2)o, D-4(1/2-7/2)o, and P-4(1/2-5/2)o levels in neutral fluorine are investigated theoretically. Large-scale calculations are carried out using the multiconfiguration Hartree-Fock (MCHF) and Dirac-Hartree-Fock (MCDHF) methods. In the framework of the MCHF approach, the relativistic effects are taken into account in the Breit-Pauli approximation using nonrelativistic orbitals. In the fully relativistic approach, the orbitals are optimized using the Dirac-Coulomb Hamiltonian with correlation models inspired by the nonrelativistic calculations. Higher-order excitations are captured through multireference configuration interaction calculations including the Breit interaction. In a third (intermediate) approach, the Dirac-Coulomb-Breit Hamiltonian matrix is diagonalized in a relativistic configuration space built with nonrelativistic MCHF radial functions converted into Dirac spinors using the Pauli approximation. The magnetic dipole hyperfine-structure constants calculated with the three relativistic models are consistent and reveal unexpectedly large effects of relativity for 2D(5/2)(o), P-4(3/2)o, and P-4(5/2)o. The agreement with the few available experimental values is satisfactory. The strong J dependence of relativistic corrections on the hyperfine constants is investigated through the detailed analysis of the orbital, spin-dipole, and contact relative contributions calculated with the nonrelativistic magnetic dipole operator. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physical Review A (Atomic, Molecular and Optical Physics)
volume
88
issue
4
article number
042501
publisher
American Physical Society
external identifiers
  • wos:000325494200003
  • scopus:84885206803
ISSN
1050-2947
DOI
10.1103/PhysRevA.88.042501
language
English
LU publication?
yes
id
d4903b38-0618-4643-82f8-f51a4557759d (old id 4163393)
date added to LUP
2016-04-01 10:29:34
date last changed
2020-01-12 03:57:20
@article{d4903b38-0618-4643-82f8-f51a4557759d,
  abstract     = {The hyperfine interaction constants of the 2p(4)(P-3)3p D-2(3/2,5/2)o, D-4(1/2-7/2)o, and P-4(1/2-5/2)o levels in neutral fluorine are investigated theoretically. Large-scale calculations are carried out using the multiconfiguration Hartree-Fock (MCHF) and Dirac-Hartree-Fock (MCDHF) methods. In the framework of the MCHF approach, the relativistic effects are taken into account in the Breit-Pauli approximation using nonrelativistic orbitals. In the fully relativistic approach, the orbitals are optimized using the Dirac-Coulomb Hamiltonian with correlation models inspired by the nonrelativistic calculations. Higher-order excitations are captured through multireference configuration interaction calculations including the Breit interaction. In a third (intermediate) approach, the Dirac-Coulomb-Breit Hamiltonian matrix is diagonalized in a relativistic configuration space built with nonrelativistic MCHF radial functions converted into Dirac spinors using the Pauli approximation. The magnetic dipole hyperfine-structure constants calculated with the three relativistic models are consistent and reveal unexpectedly large effects of relativity for 2D(5/2)(o), P-4(3/2)o, and P-4(5/2)o. The agreement with the few available experimental values is satisfactory. The strong J dependence of relativistic corrections on the hyperfine constants is investigated through the detailed analysis of the orbital, spin-dipole, and contact relative contributions calculated with the nonrelativistic magnetic dipole operator.},
  author       = {Carette, Thomas and Nemouchi, Messaoud and Li, Jiguang and Godefroid, Michel},
  issn         = {1050-2947},
  language     = {eng},
  number       = {4},
  publisher    = {American Physical Society},
  series       = {Physical Review A (Atomic, Molecular and Optical Physics)},
  title        = {Relativistic effects on the hyperfine structures of 2 p(4)(P-3)3 p D-2(o), D-4(o), and P-4(o) in F-19 I},
  url          = {https://lup.lub.lu.se/search/ws/files/1888734/4252443.pdf},
  doi          = {10.1103/PhysRevA.88.042501},
  volume       = {88},
  year         = {2013},
}