Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Collisions and close encounters involving massive main-sequence stars

Dale, JE and Davies, Melvyn B LU (2006) In Monthly Notices of the Royal Astronomical Society 366(4). p.1424-1436
Abstract
We study close encounters involving massive main-sequence stars and the evolution of the exotic products of these encounters as common-envelope systems or possible hypernova progenitors. We show that parabolic encounters between low- and high-mass stars and between two high-mass stars with small periastrons result in mergers on time-scales of a few tens of stellar free-fall times (a few tens of hours). We show that such mergers of unevolved low-mass stars with evolved high-mass stars result in little mass-loss (similar to 0.01 M-circle dot) and can deliver sufficient fresh hydrogen to the core of the collision product to allow the collision product to burn for several million years. We find that grazing encounters enter a common-envelope... (More)
We study close encounters involving massive main-sequence stars and the evolution of the exotic products of these encounters as common-envelope systems or possible hypernova progenitors. We show that parabolic encounters between low- and high-mass stars and between two high-mass stars with small periastrons result in mergers on time-scales of a few tens of stellar free-fall times (a few tens of hours). We show that such mergers of unevolved low-mass stars with evolved high-mass stars result in little mass-loss (similar to 0.01 M-circle dot) and can deliver sufficient fresh hydrogen to the core of the collision product to allow the collision product to burn for several million years. We find that grazing encounters enter a common-envelope phase which may expel the envelope of the merger product. The deposition of energy in the envelopes of our merger products causes them to swell by factors of similar to 100. If these remnants exist in very densely populated environments (n greater than or similar to 10(7) pc(-3)), they will suffer further collisions which may drive off their envelopes, leaving behind hard binaries. We show that the products of collisions have cores rotating sufficiently rapidly to make them candidate hypernova/gamma-ray burst progenitors and that similar to 0.1 per cent of massive stars may suffer collisions, sufficient for such events to contribute significantly to the observed rates of hypernovae and gamma-ray bursts. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
gamma-rays : bursts, blue stragglers, supernovae : general
in
Monthly Notices of the Royal Astronomical Society
volume
366
issue
4
pages
1424 - 1436
publisher
Oxford University Press
external identifiers
  • wos:000235696500024
  • scopus:33644590570
ISSN
1365-2966
DOI
10.1111/j.1365-2966.2005.09937.x
language
English
LU publication?
yes
id
f86370ef-9e47-41bb-a687-1d3340b8d3a5 (old id 416683)
date added to LUP
2016-04-01 12:32:33
date last changed
2020-12-16 01:13:13
@article{f86370ef-9e47-41bb-a687-1d3340b8d3a5,
  abstract     = {We study close encounters involving massive main-sequence stars and the evolution of the exotic products of these encounters as common-envelope systems or possible hypernova progenitors. We show that parabolic encounters between low- and high-mass stars and between two high-mass stars with small periastrons result in mergers on time-scales of a few tens of stellar free-fall times (a few tens of hours). We show that such mergers of unevolved low-mass stars with evolved high-mass stars result in little mass-loss (similar to 0.01 M-circle dot) and can deliver sufficient fresh hydrogen to the core of the collision product to allow the collision product to burn for several million years. We find that grazing encounters enter a common-envelope phase which may expel the envelope of the merger product. The deposition of energy in the envelopes of our merger products causes them to swell by factors of similar to 100. If these remnants exist in very densely populated environments (n greater than or similar to 10(7) pc(-3)), they will suffer further collisions which may drive off their envelopes, leaving behind hard binaries. We show that the products of collisions have cores rotating sufficiently rapidly to make them candidate hypernova/gamma-ray burst progenitors and that similar to 0.1 per cent of massive stars may suffer collisions, sufficient for such events to contribute significantly to the observed rates of hypernovae and gamma-ray bursts.},
  author       = {Dale, JE and Davies, Melvyn B},
  issn         = {1365-2966},
  language     = {eng},
  number       = {4},
  pages        = {1424--1436},
  publisher    = {Oxford University Press},
  series       = {Monthly Notices of the Royal Astronomical Society},
  title        = {Collisions and close encounters involving massive main-sequence stars},
  url          = {http://dx.doi.org/10.1111/j.1365-2966.2005.09937.x},
  doi          = {10.1111/j.1365-2966.2005.09937.x},
  volume       = {366},
  year         = {2006},
}