Trains of attosecond electron wave packets
(2006) In Journal of Modern Optics 53(1-2). p.233-245- Abstract
- We study temporally localized electron wave packets, generated using a train of extreme ultraviolet (XUV) attosecond pulses to ionize the target atoms. Both the electron wave packets and the attosecond pulse train ( APT) are characterized using the same technique, based on interference of two-photon transitions in the continuum. We study, in particular, the energy transfer from a moderately strong infrared (IR) field to the electron wave packets as a function of time delay between the XUV and the IR fields. The use of an APT to generate the electron wave packets enables the generation at times not accessible through tunneling ionization. We find that a significant amount of energy is transferred from the IR field to the electron wave... (More)
- We study temporally localized electron wave packets, generated using a train of extreme ultraviolet (XUV) attosecond pulses to ionize the target atoms. Both the electron wave packets and the attosecond pulse train ( APT) are characterized using the same technique, based on interference of two-photon transitions in the continuum. We study, in particular, the energy transfer from a moderately strong infrared (IR) field to the electron wave packets as a function of time delay between the XUV and the IR fields. The use of an APT to generate the electron wave packets enables the generation at times not accessible through tunneling ionization. We find that a significant amount of energy is transferred from the IR field to the electron wave packets, when they are generated at a zero-crossing of the IR laser field. This energy transfer results in a dramatically enhanced above-threshold ionization even at IR intensities that alone are not strong enough to induce any significant ionization. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/417730
- author
- organization
- publishing date
- 2006
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Journal of Modern Optics
- volume
- 53
- issue
- 1-2
- pages
- 233 - 245
- publisher
- Taylor & Francis
- external identifiers
-
- wos:000235212900023
- scopus:33751285553
- ISSN
- 0950-0340
- DOI
- 10.1080/09500340500228180
- language
- English
- LU publication?
- yes
- id
- 19a49449-4fa5-4488-9729-28b3ecae8802 (old id 417730)
- date added to LUP
- 2016-04-01 16:51:37
- date last changed
- 2022-01-28 22:39:29
@article{19a49449-4fa5-4488-9729-28b3ecae8802, abstract = {{We study temporally localized electron wave packets, generated using a train of extreme ultraviolet (XUV) attosecond pulses to ionize the target atoms. Both the electron wave packets and the attosecond pulse train ( APT) are characterized using the same technique, based on interference of two-photon transitions in the continuum. We study, in particular, the energy transfer from a moderately strong infrared (IR) field to the electron wave packets as a function of time delay between the XUV and the IR fields. The use of an APT to generate the electron wave packets enables the generation at times not accessible through tunneling ionization. We find that a significant amount of energy is transferred from the IR field to the electron wave packets, when they are generated at a zero-crossing of the IR laser field. This energy transfer results in a dramatically enhanced above-threshold ionization even at IR intensities that alone are not strong enough to induce any significant ionization.}}, author = {{Johnsson, Per and Varju, Katalin and Remetter, Thomas and Mansten, Erik and Mauritsson, J and Lopez-Martens, R and Kazamias, S and Valentin, C and Balcou, P and Gaarde, MB and Schafer, KJ and L'Huillier, Anne}}, issn = {{0950-0340}}, language = {{eng}}, number = {{1-2}}, pages = {{233--245}}, publisher = {{Taylor & Francis}}, series = {{Journal of Modern Optics}}, title = {{Trains of attosecond electron wave packets}}, url = {{https://lup.lub.lu.se/search/files/4801668/2425935.pdf}}, doi = {{10.1080/09500340500228180}}, volume = {{53}}, year = {{2006}}, }