Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin - Upper Blue Nile Basin of Ethiopia

Dile, Yihun Taddele ; Berndtsson, Ronny LU orcid and Setegn, Shimelis G. (2013) In PLoS ONE 8(10).
Abstract
Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was... (More)
Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
8
issue
10
article number
e79296
publisher
Public Library of Science (PLoS)
external identifiers
  • wos:000326152300091
  • scopus:84886266158
  • pmid:24250755
ISSN
1932-6203
DOI
10.1371/journal.pone.0079296
language
English
LU publication?
yes
id
1ed088b1-d128-46e3-b8f0-cf3b76d05d81 (old id 4212743)
date added to LUP
2016-04-01 13:44:05
date last changed
2023-10-01 05:54:42
@article{1ed088b1-d128-46e3-b8f0-cf3b76d05d81,
  abstract     = {{Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin.}},
  author       = {{Dile, Yihun Taddele and Berndtsson, Ronny and Setegn, Shimelis G.}},
  issn         = {{1932-6203}},
  language     = {{eng}},
  number       = {{10}},
  publisher    = {{Public Library of Science (PLoS)}},
  series       = {{PLoS ONE}},
  title        = {{Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin - Upper Blue Nile Basin of Ethiopia}},
  url          = {{http://dx.doi.org/10.1371/journal.pone.0079296}},
  doi          = {{10.1371/journal.pone.0079296}},
  volume       = {{8}},
  year         = {{2013}},
}