Advanced

Toward Creating a Coherent, Next-Generation Light Source with special emphasis on nonlinear harmonic generation in single-pass, high-gain free-electron lasers

Biedron, Sandra G. LU (2001)
Abstract
There is a strong desire for short wavelength (~1 Å), short pulsewidth (<100 fs), high-brightness, transverse and longitudinally coherent light pulses for use by the synchrotron radiation community. These requirements exceed the limits achievable by existing, so-called, "third-generation" light sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory (ANL), USA, the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, and SPring-8 in Harima Science Garden City, Japan.



Single-pass, high-gain free-electron laser (FEL) methods have the ability to fulfill these requirements and have been proposed as the next-generation light source. Such arrangements include, but are not limited to,... (More)
There is a strong desire for short wavelength (~1 Å), short pulsewidth (<100 fs), high-brightness, transverse and longitudinally coherent light pulses for use by the synchrotron radiation community. These requirements exceed the limits achievable by existing, so-called, "third-generation" light sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory (ANL), USA, the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, and SPring-8 in Harima Science Garden City, Japan.



Single-pass, high-gain free-electron laser (FEL) methods have the ability to fulfill these requirements and have been proposed as the next-generation light source. Such arrangements include, but are not limited to, straight amplifier configurations, self-amplified spontaneous emission (SASE), the two-undulator harmonic generation amplifier scheme (TUHGS), and high-gain harmonic generation (HGHG). These single-pass, high-gain FELs typically employ planar undulators and can all generate nonlinear spectral harmonics with significant power levels. Of notable interest is the combination of the accelerator and traditional lasers, since existing laser technologies may be used for seeding the amplifier, TUHGS, and HGHG cases.



This work examines single-pass, high-gain free-electron lasers analytically, via numerical simulations, and experimentally. An existing code, MEDUSA, was further developed to simulate relevant mechanisms as will be described. Along with a review of the respective theories, a three-step SASE FEL experiment at the APS, a two-step FEL experiment at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) involving both the SASE and HGHG methods, and the characteristics of nonlinear harmonic generation in both of these experiments are discussed. Finally, a modular approach to the next-generation light source is described.



The above proof-of-principle experiments represent necessary steps toward achieving the next-generation light source. The ATF experiment tests the SASE and HGHG theories at a mid-infrared wavelength, while the APS experiment examines the SASE theory first at visible and then at ultraviolet wavelengths. The extension from the visible/ultraviolet wavelengths to the x-ray wavelength regime is not trivial, and there still remains much work before achieving the final goal based on the single-pass, high-gain free-electron laser theories and experiments.



Of the topics elucidated within this manuscript, nonlinear harmonic generation in single-pass, high-gain FELs is perhaps the most significant. Although there is a reduction, compared to the fundamental wavelength, in the resultant output photon power when using the nonlinear harmonics to achieve shorter wavelengths, the harmonics do permit the use of an electron bunch of both lower energy and lesser quality. Therefore, smaller, less expensive machines could be developed, allowing many more facilities to be constructed and ultimately benefit from these bright, coherent, next-generation light sources. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

De mest briljanta ljuskällor som finns idag är de så kallade synkrotronljuskällorna som kan generera ljus över ett mycket brett våglängdsspectrum, från synligt ljus ända till mycket korta våglängder - röntgenstrålar. Det existerar många sådana faciliteter runt om i världen och de används dagligen i olika experiment för att öka våra kunskaper om material på en mikrospopisk nivå inom ett flertal forskningsområden relaterade till fysik, biologi och kemi.



Fastän dessa källor är väldigt ljusstarka, kräver en del experiment i framtiden ännu intensivare ljus som dessutom har laserliknande egenskaper med en varierbar våglängd - ner till röntgenvåglängder. Det pågår därför runt om i... (More)
Popular Abstract in Swedish

De mest briljanta ljuskällor som finns idag är de så kallade synkrotronljuskällorna som kan generera ljus över ett mycket brett våglängdsspectrum, från synligt ljus ända till mycket korta våglängder - röntgenstrålar. Det existerar många sådana faciliteter runt om i världen och de används dagligen i olika experiment för att öka våra kunskaper om material på en mikrospopisk nivå inom ett flertal forskningsområden relaterade till fysik, biologi och kemi.



Fastän dessa källor är väldigt ljusstarka, kräver en del experiment i framtiden ännu intensivare ljus som dessutom har laserliknande egenskaper med en varierbar våglängd - ner till röntgenvåglängder. Det pågår därför runt om i världen en intensiv forskning för att öka vår förståelse om hur en sådan ljuskälla ska kunna byggas. Detta arbete undersöker denna nya typ av ljuskälla.



I det här arbetet rapporterar vi om både teori och experiment och diskuterar också resultat från datorsimuleringar. Vi beskriver också hur en sådan ljuskälla kan byggas i praktiken. Vi har dragit nytta av kunskaper från många ämnesområden inom fysiken, speciellt från teorier om partikelacceleratorer och lasrar. Slutligen presenterar vi hur det är möjligt att använda så kallade högre övertoner av den fundamentala frekvensen för att nå rikigt korta våglängder. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Dr Poole, Michael, CLRC Daresbury Laboratory, Warrington, United Kingdom
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Visible and Ultraviolet Sources, Intense Particle Beams and Radiation Sources, Frequency Conversion, Free-Electron Lasers, Harmonic Generation, Physics, Fysik
pages
500 pages
publisher
MAX-lab, Lund University
defense location
Sal B, E-huset
defense date
2001-12-14 13:00:00
external identifiers
  • other:ISRN:LUNDTDX
ISBN
91-7874-167-X
language
English
LU publication?
yes
additional info
Article: I S.V. Milton, E. Gluskin, N.D. Arnold, C. Benson, W. Berg, S.G. Biedron, M. Borland, Y. C. Chae, R.J. Dejus, P.K. Den Hartog, B. Deriy, M. Erdmann, Z. Huang, K. J. Kim, J.W. Lewellen, Y. Li, A.H. Lumpkin, O. Makarov, E.R. Moog, A. Nassiri, V. Sajaev, R. Soliday, B.J. Tieman, E.M. Trakhtenberg, G. Travish, I.B. Vasserman, N.A. Vinokurov, G. Wiemerslage, B.X. Yang, “Measured Exponential Gain and Saturation of a Self-Amplified Spontnaeous Emission Free-Electron Laser,” originally published in Science Express as 10.1126/science.1059955 on May 17, 2001; Science 292(5524) (2001) 2037. Article: II S.G. Biedron, H.P. Freund, S.V. Milton, X.J. Wang, L.-H. Yu, “Nonlinear Harmonics in the High-Gain Harmonic Generation (HGHG) Experiment,” accepted in Nucl. Instrum. Methods A, to appear in 2001. Article: III S.G. Biedron, S.V. Milton, and H.P. Freund, “Modular Approach to Achieving the Next-Generation X-Ray Light Source,” accepted in Nucl. Instrum. Methods A, to appear in 2001. Article: IV A. Doyuran, M. Babzien, T. Shaftan, S.G. Biedron, L.H. Yu, I. Ben-Zvi, L.F. DiMauro, W. Graves, E. Johnson, S. Krinsky, R. Malone, I. Pogorelsky, J. Skaritka, G. Rakowsky, X.J. Wang, M. Woodle, V. Yakimenko, J. Jagger, V. Sajaev, I. Vasserman, “New Results of the High-Gain Harmonic Generation Free-Electron Laser Experiment,” accepted in Nucl. Instrum. Methods A, to appear in 2001. Article: V S.V. Milton, E. Gluskin, S.G. Biedron, R.J. Dejus, P.K. Den Hartog, J.N. Galayda, K.-J. Kim, J.W. Lewellen, E.R. Moog, V. Sajaev, N.S. Sereno, G. Travish, N.A. Vinokurov, et al., “Observation and Analysis of Self-Amplified Spontaneous Emission at the APS,” accepted in Nucl. Instrum. Methods A, to appear in 2001. Article: VI S.G. Biedron, H.P. Freund, S.V. Milton, Y. Li, “Simulation of the fundamental and nonlinear harmonic output from an FEL amplifier with a soft x-ray seed laser,” Proc of the 7th European Accelerator Conference, Vienna, Austria, 26-30 June, Vienna, pp. 729-731, 2000.VII S.V. Milton, reporting for the APS LEUTL Commissioning Team, http://www.aps.anl.gov/asd/leutl/CommissioningTeam.html, “Results from the Advanced Photon Source SASE FEL Project,” Proc. of 7th European Particle Accelerator Conference, Vienna, Austria, 26-30 June, pp. 755-757, 2000. Article: VIII S.V. Milton, E. Gluskin, S.G. Biedron, R.J. Dejus, P.K. Den Hartog, J.N. Galayda, K.-J. Kim, J.W. Lewellen, E.R. Moog, V. Sajaev, N.S. Sereno, G. Travish, N.A. Vinokurov et al., “Observation of Self-Amplified Spontaneous Emission and Exponential Growth at 530 nm,” Phys. Rev. Lett. 85 (2000) 988. Article: IX L.-H. Yu, M. Babzien, I. Ben-Zvi, L.F. DiMauro, A. Doyuran, W. Graves, E. Johnson, S. Krinsky, R. Malone, I. Pogorelsky, J. Skaritka, G. Rakowsky, L. Solomon, X.J. Wang, M. Woodle, V. Yakimenko, S.G. Biedron, J.N. Galayda, E. Gluskin, J. Jagger, V. Sajaev, I. Vasserman, “High-Gain Harmonic Generation Free-Electron Laser,” Science 289 (2000) 932. Article: X H.P. Freund, S.G. Biedron, S.V. Milton, “Nonlinear Harmonic Generation and Proposed Experimental Verification in SASE FELs,” Nucl. Instrum. Methods A 445 (2000) 53. Article: XI H.P. Freund, S.G. Biedron, S.V. Milton, “Nonlinear Harmonic Generation in Free-Electron Lasers,” IEEE J. Quantum Electron. 36 (2000) 275. Article: XII S.G. Biedron, Y.C. Chae, R.J. Dejus, B. Faatz, H.P. Freund, S.V. Milton, H-D. Nuhn, S. Reiche, “Multi-Dimensional Free-Electron Laser Simulation Codes: A Comparison Study,” Nucl. Instrum. Methods A 445 (2000) 110. Article: XIII S.G. Biedron, H.P. Freund, L.-H.Yu, “Parameter Analysis for a High-Gain Harmonic Generation FEL Using a Recently Developed 3D Polychromatic Code,” Nucl. Instrum. Methods A 445 (2000) 95. Article: XIV L.-H. Yu, M. Babzien, I. Ben-Zvi, L.F. DiMauro, A. Doyuran, W. Graves, E. Johnson, S. Krinsky, R. Malone, I. Pogorelsky, J. Skaritka, G. Rakowsky, L. Solomon, X.J. Wang, M. Woodle, V. Yakimenko, S.G. Biedron, J.N. Galayda, E. Gluskin, J. Jagger, V. Sajaev, I. Vasserman, “First Lasing of a High-Gain Harmonic Generation Free-Electron Laser Experiment,” Nucl. Instrum. Methods A 445 (2000) 301. Article: XV S. Werin, Å. Andersson, M. Eriksson, S. Biedron, H. Freund, “An Rf-Gun-Driven Recirculated Linac as Injector and FEL Driver,” Nucl. Instrum. Methods A 445 (2000) 413. Article: XVI S.G. Biedron, G.A. Goeppner, J.W. Lewellen, G. Travish, X.J. Wang et al., “The Operation of the BNL Gun-IV Photocathode Gun at the Advanced Photon Source,” Proc. of the 1999 Particle Accelerator Conference, New York, NY, March 29-April 2, 1999, pp. 2024-2026, 1999.XVII S.G. Biedron, Y.-C. Chae, R.J. Dejus, B. Faatz, H.P. Freund, S. Milton, H.-D. Nuhn, S. Reiche, “The APS SASE FEL: Modeling and Code Comparison,” Proc. of the 1999 Particle Accelerator Conference, New York, NY, March 29-April 2, 1999, pp. 2486-2488, 1999. Article: XVIII S.V. Milton, S.G. Biedron, P. Den Hartog, J.W. Lewellen, E. Moog, A. Nassiri, G. Travish, “The APS SASE FEL: Status and Commissioning Results,” Proc. of the 1999 Particle Accelerator Conference, New York, NY, March 29-April 2, 1999, pp. 2483-2485 (1999). Article: XIX S. Werin, Å. Andersson, M. Eriksson, M. Georgsson, G. Le-Blanc, L.-J. Lindgren, E. Wallén, S. Biedron, “The New Injector and Storage Ring for the MAX-Laboratory,” Proc. of the 1999 Particle Accelerator Conference, New York, NY, March 29-April 2, 1999, pp. 2945-2947, 1999. Article: XX L.-H. Yu, M. Babzien, I. Ben-Zvi, L.F. DiMauro, A. Doyuran, W. Graves, E. Johnson, S. Krinsky, R. Malone, I. Pogorelsky, J. Skaritka, G. Rakowsky, L. Solomon, X.J. Wang, M. Woodle, V. Yakimenko (BNL), S.G. Biedron, J.N. Galayda, V. Sajaev, I. Vasserman (ANL), “The Status of a High-Gain Harmonic Generation Experiment at the Accelerator Test Facility, Proc. of the 1999 Particle Accelerator Conference, New York, NY, March 29-April 2, 1999, pp. 2470-2473, 1999. Article: XXI S.G. Biedron, H.P. Freund, and S.V. Milton, “Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment,” in Free Electron Laser Challenges II, Harold E. Bennett, David H. Dowell, Eds., Proc. SPIE 3614 (1999) 96. Article: XXII S.V. Milton et al., “The FEL Development at the Advanced Photon Source,” in Free Electron Laser Challenges II, Harold E. Bennett, David H. Dowell, Eds., Proc. SPIE 3614 (1999) 86. Article: XXIII J.W. Lewellen, S. Biedron, A. Lumpkin, S.V. Milton, A. Nassiri, S.J. Pasky, G. Travish, M. White, “Operation of the APS RF Gun,” Proc. of the XIX International Linear Accelerator Conference, Chicago, Illinois, August 23-29, 1998, pp. 863-865, 1999.XXIV N. Arnold, W. Berg, S. Biedron, A. Lumpkin, S. Milton, M. White, B. Yang, “Implementation of Improved Interactive Image Analysis at the Advanced Photon Source (APS) Linac,” Proc. of the XIX International Linear Accelerator Conference, Chicago, Illinois, August 23-29, 1998, pp. 899-901, 1998.
id
a08fe6d0-7c6e-4a1b-967c-a06ff618cd05 (old id 42149)
date added to LUP
2016-04-04 11:43:07
date last changed
2018-11-21 21:06:44
@phdthesis{a08fe6d0-7c6e-4a1b-967c-a06ff618cd05,
  abstract     = {There is a strong desire for short wavelength (~1 Å), short pulsewidth (&lt;100 fs), high-brightness, transverse and longitudinally coherent light pulses for use by the synchrotron radiation community. These requirements exceed the limits achievable by existing, so-called, "third-generation" light sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory (ANL), USA, the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, and SPring-8 in Harima Science Garden City, Japan.<br/><br>
<br/><br>
Single-pass, high-gain free-electron laser (FEL) methods have the ability to fulfill these requirements and have been proposed as the next-generation light source. Such arrangements include, but are not limited to, straight amplifier configurations, self-amplified spontaneous emission (SASE), the two-undulator harmonic generation amplifier scheme (TUHGS), and high-gain harmonic generation (HGHG). These single-pass, high-gain FELs typically employ planar undulators and can all generate nonlinear spectral harmonics with significant power levels. Of notable interest is the combination of the accelerator and traditional lasers, since existing laser technologies may be used for seeding the amplifier, TUHGS, and HGHG cases.<br/><br>
<br/><br>
This work examines single-pass, high-gain free-electron lasers analytically, via numerical simulations, and experimentally. An existing code, MEDUSA, was further developed to simulate relevant mechanisms as will be described. Along with a review of the respective theories, a three-step SASE FEL experiment at the APS, a two-step FEL experiment at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) involving both the SASE and HGHG methods, and the characteristics of nonlinear harmonic generation in both of these experiments are discussed. Finally, a modular approach to the next-generation light source is described.<br/><br>
<br/><br>
The above proof-of-principle experiments represent necessary steps toward achieving the next-generation light source. The ATF experiment tests the SASE and HGHG theories at a mid-infrared wavelength, while the APS experiment examines the SASE theory first at visible and then at ultraviolet wavelengths. The extension from the visible/ultraviolet wavelengths to the x-ray wavelength regime is not trivial, and there still remains much work before achieving the final goal based on the single-pass, high-gain free-electron laser theories and experiments.<br/><br>
<br/><br>
Of the topics elucidated within this manuscript, nonlinear harmonic generation in single-pass, high-gain FELs is perhaps the most significant. Although there is a reduction, compared to the fundamental wavelength, in the resultant output photon power when using the nonlinear harmonics to achieve shorter wavelengths, the harmonics do permit the use of an electron bunch of both lower energy and lesser quality. Therefore, smaller, less expensive machines could be developed, allowing many more facilities to be constructed and ultimately benefit from these bright, coherent, next-generation light sources.},
  author       = {Biedron, Sandra G.},
  isbn         = {91-7874-167-X},
  language     = {eng},
  publisher    = {MAX-lab, Lund University},
  school       = {Lund University},
  title        = {Toward Creating a Coherent, Next-Generation Light Source with special emphasis on nonlinear harmonic generation in single-pass, high-gain free-electron lasers},
  year         = {2001},
}