Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Reactions on Sulfide Mineral Surfaces in Connection with Xanthate Flotation Studied by Diffuse Reflectance Ftir Spectroscopy, Atomic-Absorption Spectrophotometry and Calorimetry

Persson, I. ; Persson, Per LU ; Valli, M. ; Fozo, S. and Malmensten, B. (1991) In International Journal of Mineral Processing 33. p.67-81
Abstract
The chemical composition of plena, sphalerite and pyrite surfaces has been analysed after dry and wet grinding, and after treatment with water and aqueous solutions of potassium alkylxanthate by means of Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy. The total metal concentration in the aqueous phase has been determined by means of atomic absorption spectrophotometry. The reaction between aqueous plena slurries and ethylxanthate ions has also been studied calorimetrically. In the reaction between oxidized galena and alkylxanthate ions in aqueous solution solid lead(II) alkylxanthate is formed on the surfaces. The formation takes place via dissolution of soluble oxidation products of plena on the surface followed by... (More)
The chemical composition of plena, sphalerite and pyrite surfaces has been analysed after dry and wet grinding, and after treatment with water and aqueous solutions of potassium alkylxanthate by means of Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy. The total metal concentration in the aqueous phase has been determined by means of atomic absorption spectrophotometry. The reaction between aqueous plena slurries and ethylxanthate ions has also been studied calorimetrically. In the reaction between oxidized galena and alkylxanthate ions in aqueous solution solid lead(II) alkylxanthate is formed on the surfaces. The formation takes place via dissolution of soluble oxidation products of plena on the surface followed by the precipitation of solid lead(II) alkylxanthate. It has been shown that lead(II) alkylxanthate is formed as the only detectable alkylxanthate species on the surface. Chemisorbed complexes of ethylxanthate ions are formed on sphalerite surfaces in aqueous and acetone slurries. The ethylxanthate ions are coordinated to zinc(II) ions in the outermost surface layer of sphalerite. Dialkyl dixanthogen is formed as the only surface species in the reaction between oxidized pyrite and aqueous solution of potassium alkylxanthate. Adsorbed oxygen and iron(III) have been excluded as possible oxidation agents. The oxidation products of the disulfide ion in pyrite, e.g. S2O72- and S2O82-, are instead proposed to be responsible for the oxidation of alkylxanthate ions to dialkyl dixanthogen. The formed diethyl dixanthogen is physisorbed on the surfaces of pyrite. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
publishing date
type
Contribution to journal
publication status
published
subject
in
International Journal of Mineral Processing
volume
33
pages
67 - 81
publisher
Elsevier
external identifiers
  • scopus:0026256241
ISSN
0301-7516
DOI
10.1016/0301-7516(91)90043-I
language
English
LU publication?
no
additional info
1-4
id
c27a9edb-7cf8-47ce-a938-8fe8419f8ac3 (old id 4332741)
date added to LUP
2016-04-01 16:28:37
date last changed
2021-06-13 05:08:33
@article{c27a9edb-7cf8-47ce-a938-8fe8419f8ac3,
  abstract     = {{The chemical composition of plena, sphalerite and pyrite surfaces has been analysed after dry and wet grinding, and after treatment with water and aqueous solutions of potassium alkylxanthate by means of Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy. The total metal concentration in the aqueous phase has been determined by means of atomic absorption spectrophotometry. The reaction between aqueous plena slurries and ethylxanthate ions has also been studied calorimetrically. In the reaction between oxidized galena and alkylxanthate ions in aqueous solution solid lead(II) alkylxanthate is formed on the surfaces. The formation takes place via dissolution of soluble oxidation products of plena on the surface followed by the precipitation of solid lead(II) alkylxanthate. It has been shown that lead(II) alkylxanthate is formed as the only detectable alkylxanthate species on the surface. Chemisorbed complexes of ethylxanthate ions are formed on sphalerite surfaces in aqueous and acetone slurries. The ethylxanthate ions are coordinated to zinc(II) ions in the outermost surface layer of sphalerite. Dialkyl dixanthogen is formed as the only surface species in the reaction between oxidized pyrite and aqueous solution of potassium alkylxanthate. Adsorbed oxygen and iron(III) have been excluded as possible oxidation agents. The oxidation products of the disulfide ion in pyrite, e.g. S2O72- and S2O82-, are instead proposed to be responsible for the oxidation of alkylxanthate ions to dialkyl dixanthogen. The formed diethyl dixanthogen is physisorbed on the surfaces of pyrite.}},
  author       = {{Persson, I. and Persson, Per and Valli, M. and Fozo, S. and Malmensten, B.}},
  issn         = {{0301-7516}},
  language     = {{eng}},
  pages        = {{67--81}},
  publisher    = {{Elsevier}},
  series       = {{International Journal of Mineral Processing}},
  title        = {{Reactions on Sulfide Mineral Surfaces in Connection with Xanthate Flotation Studied by Diffuse Reflectance Ftir Spectroscopy, Atomic-Absorption Spectrophotometry and Calorimetry}},
  url          = {{http://dx.doi.org/10.1016/0301-7516(91)90043-I}},
  doi          = {{10.1016/0301-7516(91)90043-I}},
  volume       = {{33}},
  year         = {{1991}},
}