Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Rethinking transcriptional activation in the Arabidopsis circadian clock.

Fogelmark, Karl LU and Troein, Carl LU orcid (2014) In PLoS Computational Biology 10(7).
Abstract
Circadian clocks are biological timekeepers that allow living cells to time their activity in anticipation of predictable daily changes in light and other environmental factors. The complexity of the circadian clock in higher plants makes it difficult to understand the role of individual genes or molecular interactions, and mathematical modelling has been useful in guiding clock research in model organisms such as Arabidopsis thaliana. We present a model of the circadian clock in Arabidopsis, based on a large corpus of published time course data. It appears from experimental evidence in the literature that most interactions in the clock are repressive. Hence, we remove all transcriptional activation found in previous models of this system,... (More)
Circadian clocks are biological timekeepers that allow living cells to time their activity in anticipation of predictable daily changes in light and other environmental factors. The complexity of the circadian clock in higher plants makes it difficult to understand the role of individual genes or molecular interactions, and mathematical modelling has been useful in guiding clock research in model organisms such as Arabidopsis thaliana. We present a model of the circadian clock in Arabidopsis, based on a large corpus of published time course data. It appears from experimental evidence in the literature that most interactions in the clock are repressive. Hence, we remove all transcriptional activation found in previous models of this system, and instead extend the system by including two new components, the morning-expressed activator RVE8 and the nightly repressor/activator NOX. Our modelling results demonstrate that the clock does not need a large number of activators in order to reproduce the observed gene expression patterns. For example, the sequential expression of the PRR genes does not require the genes to be connected as a series of activators. In the presented model, transcriptional activation is exclusively the task of RVE8. Predictions of how strongly RVE8 affects its targets are found to agree with earlier interpretations of the experimental data, but generally we find that the many negative feedbacks in the system should discourage intuitive interpretations of mutant phenotypes. The dynamics of the clock are difficult to predict without mathematical modelling, and the clock is better viewed as a tangled web than as a series of loops. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS Computational Biology
volume
10
issue
7
article number
e1003705
publisher
Public Library of Science (PLoS)
external identifiers
  • pmid:25033214
  • wos:000339890900021
  • scopus:84905455464
  • pmid:25033214
ISSN
1553-7358
DOI
10.1371/journal.pcbi.1003705
language
English
LU publication?
yes
id
26c5d9a9-592f-4d00-b5cd-2648d7998ae5 (old id 4582153)
date added to LUP
2016-04-01 11:09:15
date last changed
2024-04-08 01:07:56
@article{26c5d9a9-592f-4d00-b5cd-2648d7998ae5,
  abstract     = {{Circadian clocks are biological timekeepers that allow living cells to time their activity in anticipation of predictable daily changes in light and other environmental factors. The complexity of the circadian clock in higher plants makes it difficult to understand the role of individual genes or molecular interactions, and mathematical modelling has been useful in guiding clock research in model organisms such as Arabidopsis thaliana. We present a model of the circadian clock in Arabidopsis, based on a large corpus of published time course data. It appears from experimental evidence in the literature that most interactions in the clock are repressive. Hence, we remove all transcriptional activation found in previous models of this system, and instead extend the system by including two new components, the morning-expressed activator RVE8 and the nightly repressor/activator NOX. Our modelling results demonstrate that the clock does not need a large number of activators in order to reproduce the observed gene expression patterns. For example, the sequential expression of the PRR genes does not require the genes to be connected as a series of activators. In the presented model, transcriptional activation is exclusively the task of RVE8. Predictions of how strongly RVE8 affects its targets are found to agree with earlier interpretations of the experimental data, but generally we find that the many negative feedbacks in the system should discourage intuitive interpretations of mutant phenotypes. The dynamics of the clock are difficult to predict without mathematical modelling, and the clock is better viewed as a tangled web than as a series of loops.}},
  author       = {{Fogelmark, Karl and Troein, Carl}},
  issn         = {{1553-7358}},
  language     = {{eng}},
  number       = {{7}},
  publisher    = {{Public Library of Science (PLoS)}},
  series       = {{PLoS Computational Biology}},
  title        = {{Rethinking transcriptional activation in the Arabidopsis circadian clock.}},
  url          = {{http://dx.doi.org/10.1371/journal.pcbi.1003705}},
  doi          = {{10.1371/journal.pcbi.1003705}},
  volume       = {{10}},
  year         = {{2014}},
}