Advanced

Synchronizing 10Be in two varved lake sediment records to IntCal13 14C during three grand solar minima

Czymzik, Markus LU ; Muscheler, Raimund LU ; Adolphi, Florian LU ; Mekhaldi, Florian LU ; Dräger, Nadine; Ott, Florian; Slowinski, Michal; Blaszkiewicz, Miroslaw; Aldahan, Ala and Possnert, Goran, et al. (2018) In Climate of the Past 14(5). p.687-696
Abstract

Timescale uncertainties between paleoclimate reconstructions often inhibit studying the exact timing, spatial expression and driving mechanisms of climate variations. Detecting and aligning the globally common cosmogenic radionuclide production signal via a curve fitting method provides a tool for the quasi-continuous synchronization of paleoclimate archives. In this study, we apply this approach to synchronize 10Be records from varved sediments of Tiefer See and Lake Czechowskie covering the Maunder, Homeric and 5500 aBP grand solar minima with 14C production rates inferred from the IntCal13 calibration curve. Our analyses indicate best fits with 14C production rates when the 10Be records from Tiefer See were shifted for 8... (More)

Timescale uncertainties between paleoclimate reconstructions often inhibit studying the exact timing, spatial expression and driving mechanisms of climate variations. Detecting and aligning the globally common cosmogenic radionuclide production signal via a curve fitting method provides a tool for the quasi-continuous synchronization of paleoclimate archives. In this study, we apply this approach to synchronize 10Be records from varved sediments of Tiefer See and Lake Czechowskie covering the Maunder, Homeric and 5500 aBP grand solar minima with 14C production rates inferred from the IntCal13 calibration curve. Our analyses indicate best fits with 14C production rates when the 10Be records from Tiefer See were shifted for 8 (-12/ + 4) (Maunder Minimum), 31 (-16/ + 12) (Homeric Minimum) and 86 (-22/ + 18) years (5500 aBP grand solar minimum) towards the past. The best fit between the Lake Czechowskie 10Be record for the 5500 aBP grand solar minimum and 14C production was obtained when the 10Be time series was shifted 29 (-8/ + 7) years towards present. No significant fits were detected between the Lake Czechowskie 10Be records for the Maunder and Homeric minima and 14C production, likely due to intensified in-lake sediment resuspension since about 2800 aBP, transporting <q>old</q> 10Be to the coring location. Our results provide a proof of concept for facilitating 10Be in varved lake sediments as a novel synchronization tool required for investigating leads and lags of proxy responses to climate variability. However, they also point to some limitations of 10Be in these archives, mainly connected to in-lake sediment resuspension processes.

(Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Climate of the Past
volume
14
issue
5
pages
10 pages
publisher
Copernicus Gesellschaft Mbh
external identifiers
  • scopus:85048025871
ISSN
1814-9324
DOI
10.5194/cp-14-687-2018
language
English
LU publication?
yes
id
46f1c052-f063-4fae-b968-9f681368cc0c
date added to LUP
2018-06-12 14:34:02
date last changed
2018-06-12 14:34:02
@article{46f1c052-f063-4fae-b968-9f681368cc0c,
  abstract     = {<p>Timescale uncertainties between paleoclimate reconstructions often inhibit studying the exact timing, spatial expression and driving mechanisms of climate variations. Detecting and aligning the globally common cosmogenic radionuclide production signal via a curve fitting method provides a tool for the quasi-continuous synchronization of paleoclimate archives. In this study, we apply this approach to synchronize <sup>10</sup>Be records from varved sediments of Tiefer See and Lake Czechowskie covering the Maunder, Homeric and 5500 aBP grand solar minima with 14C production rates inferred from the IntCal13 calibration curve. Our analyses indicate best fits with 14C production rates when the 10Be records from Tiefer See were shifted for 8 (-12/ + 4) (Maunder Minimum), 31 (-16/ + 12) (Homeric Minimum) and 86 (-22/ + 18) years (5500 aBP grand solar minimum) towards the past. The best fit between the Lake Czechowskie 10Be record for the 5500 aBP grand solar minimum and 14C production was obtained when the 10Be time series was shifted 29 (-8/ + 7) years towards present. No significant fits were detected between the Lake Czechowskie 10Be records for the Maunder and Homeric minima and 14C production, likely due to intensified in-lake sediment resuspension since about 2800 aBP, transporting &lt;q&gt;old&lt;/q&gt; 10Be to the coring location. Our results provide a proof of concept for facilitating 10Be in varved lake sediments as a novel synchronization tool required for investigating leads and lags of proxy responses to climate variability. However, they also point to some limitations of 10Be in these archives, mainly connected to in-lake sediment resuspension processes.</p>},
  author       = {Czymzik, Markus and Muscheler, Raimund and Adolphi, Florian and Mekhaldi, Florian and Dräger, Nadine and Ott, Florian and Slowinski, Michal and Blaszkiewicz, Miroslaw and Aldahan, Ala and Possnert, Goran and Brauer, Achim},
  issn         = {1814-9324},
  language     = {eng},
  month        = {05},
  number       = {5},
  pages        = {687--696},
  publisher    = {Copernicus Gesellschaft Mbh},
  series       = {Climate of the Past},
  title        = {Synchronizing <sup>10</sup>Be in two varved lake sediment records to IntCal13 <sup>14</sup>C during three grand solar minima},
  url          = {http://dx.doi.org/10.5194/cp-14-687-2018},
  volume       = {14},
  year         = {2018},
}