Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Dose-length-product determination on cone beam computed tomography through experimental measurements and dose-area-product conversion

Fransson, Veronica LU orcid and Tingberg, Anders LU orcid (2021) Medical Imaging 2021: Physics of Medical Imaging In Progress in Biomedical Optics and Imaging - Proceedings of SPIE 11595.
Abstract
The dosimetry of cone beam computed tomography (CBCT) is not fully elaborated yet, and some of these systems presents dose-area-product (DAP) values after an examination rather than, as in the case of traditional CT, the doselength- product (DLP). The purpose of this study was to provide a reproducible and straight-forward method for DLP measurements on CBCT, as well as to validate a tool for estimating DLP for a CBCT system in terms of accuracy. A prototype conversion tool for estimating DLP, using the DAP value, was provided by the vendor of a CBCT system which currently display only DAP. The DAP to DLP conversion tool was validated using five protocols for extremity imaging. DLP was measured using a 30 cm ionization chamber and 30 cm... (More)
The dosimetry of cone beam computed tomography (CBCT) is not fully elaborated yet, and some of these systems presents dose-area-product (DAP) values after an examination rather than, as in the case of traditional CT, the doselength- product (DLP). The purpose of this study was to provide a reproducible and straight-forward method for DLP measurements on CBCT, as well as to validate a tool for estimating DLP for a CBCT system in terms of accuracy. A prototype conversion tool for estimating DLP, using the DAP value, was provided by the vendor of a CBCT system which currently display only DAP. The DAP to DLP conversion tool was validated using five protocols for extremity imaging. DLP was measured using a 30 cm ionization chamber and 30 cm long cylindrical PMMA-phantom. DLP, the integrated absorbed dose within the ionization chamber, was measured through central and peripheral measurements in the phantom in order to calculate the weighted DLP, DLPW,CBCT. Comparisons between DLPW,CBCT and estimated DLP, showed that the conversion tool was accurate within 10%, with a mean average error of 6.1% for all measured protocols. The variation between repeated measurements was small, making the method highly reproducible. In conclusion, in this study a simple method for determining DLP on CBCT was presented, and it was validated that the conversion tool can present the delivered dose in terms of DLP with high accuracy. The measured DLP, as well as the DLP estimated by the conversion tool, is suitable for quality control and relative dose comparisons between protocols, but its’ relation to the DLP of CT systems should be investigated further in order to relate to patient dose. (Less)
Abstract (Swedish)
The dosimetry of cone beam computed tomography (CBCT) is not fully elaborated yet, and some of these systems presents dose-area-product (DAP) values after an examination rather than, as in the case of traditional CT, the doselength- product (DLP). The purpose of this study was to provide a reproducible and straight-forward method for DLP measurements on CBCT, as well as to validate a tool for estimating DLP for a CBCT system in terms of accuracy. A prototype conversion tool for estimating DLP, using the DAP value, was provided by the vendor of a CBCT system which currently display only DAP. The DAP to DLP conversion tool was validated using five protocols for extremity imaging. DLP was measured using a 30 cm ionization chamber and 30 cm... (More)
The dosimetry of cone beam computed tomography (CBCT) is not fully elaborated yet, and some of these systems presents dose-area-product (DAP) values after an examination rather than, as in the case of traditional CT, the doselength- product (DLP). The purpose of this study was to provide a reproducible and straight-forward method for DLP measurements on CBCT, as well as to validate a tool for estimating DLP for a CBCT system in terms of accuracy. A prototype conversion tool for estimating DLP, using the DAP value, was provided by the vendor of a CBCT system which currently display only DAP. The DAP to DLP conversion tool was validated using five protocols for extremity imaging. DLP was measured using a 30 cm ionization chamber and 30 cm long cylindrical PMMA-phantom. DLP, the integrated absorbed dose within the ionization chamber, was measured through central and peripheral measurements in the phantom in order to calculate the weighted DLP, DLPW,CBCT. Comparisons between DLPW,CBCT and estimated DLP, showed that the conversion tool was accurate within 10%, with a mean average error of 6.1% for all measured protocols. The variation between repeated measurements was small, making the method highly reproducible. In conclusion, in this study a simple method for determining DLP on CBCT was presented, and it was validated that the conversion tool can present the delivered dose in terms of DLP with high accuracy. The measured DLP, as well as the DLP estimated by the conversion tool, is suitable for quality control and relative dose comparisons between protocols, but its’ relation to the DLP of CT systems should be investigated further in order to relate to patient dose. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
host publication
Medical Imaging 2021 : Physics of Medical Imaging - Physics of Medical Imaging
series title
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
editor
Bosmans, Hilde ; Zhao, Wei and Yu, Lifeng
volume
11595
article number
115952Y
publisher
SPIE
conference name
Medical Imaging 2021: Physics of Medical Imaging
conference location
Virtual, Online, United States
conference dates
2021-02-15 - 2021-02-19
external identifiers
  • scopus:85103685030
ISSN
1605-7422
ISBN
9781510640207
DOI
10.1117/12.2575906
language
English
LU publication?
yes
id
477b6933-ac19-4b67-83c3-ed7989d7eb96
date added to LUP
2021-07-22 10:55:32
date last changed
2024-03-23 07:06:13
@inproceedings{477b6933-ac19-4b67-83c3-ed7989d7eb96,
  abstract     = {{The dosimetry of cone beam computed tomography (CBCT) is not fully elaborated yet, and some of these systems presents dose-area-product (DAP) values after an examination rather than, as in the case of traditional CT, the doselength- product (DLP). The purpose of this study was to provide a reproducible and straight-forward method for DLP measurements on CBCT, as well as to validate a tool for estimating DLP for a CBCT system in terms of accuracy. A prototype conversion tool for estimating DLP, using the DAP value, was provided by the vendor of a CBCT system which currently display only DAP. The DAP to DLP conversion tool was validated using five protocols for extremity imaging. DLP was measured using a 30 cm ionization chamber and 30 cm long cylindrical PMMA-phantom. DLP, the integrated absorbed dose within the ionization chamber, was measured through central and peripheral measurements in the phantom in order to calculate the weighted DLP, DLPW,CBCT. Comparisons between DLPW,CBCT and estimated DLP, showed that the conversion tool was accurate within 10%, with a mean average error of 6.1% for all measured protocols. The variation between repeated measurements was small, making the method highly reproducible. In conclusion, in this study a simple method for determining DLP on CBCT was presented, and it was validated that the conversion tool can present the delivered dose in terms of DLP with high accuracy. The measured DLP, as well as the DLP estimated by the conversion tool, is suitable for quality control and relative dose comparisons between protocols, but its’ relation to the DLP of CT systems should be investigated further in order to relate to patient dose.}},
  author       = {{Fransson, Veronica and Tingberg, Anders}},
  booktitle    = {{Medical Imaging 2021 : Physics of Medical Imaging}},
  editor       = {{Bosmans, Hilde and Zhao, Wei and Yu, Lifeng}},
  isbn         = {{9781510640207}},
  issn         = {{1605-7422}},
  language     = {{eng}},
  publisher    = {{SPIE}},
  series       = {{Progress in Biomedical Optics and Imaging - Proceedings of SPIE}},
  title        = {{Dose-length-product determination on cone beam computed tomography through experimental measurements and dose-area-product conversion}},
  url          = {{http://dx.doi.org/10.1117/12.2575906}},
  doi          = {{10.1117/12.2575906}},
  volume       = {{11595}},
  year         = {{2021}},
}