Biogenic SOA formation through gas-phase oxidation and gas-to-particle partitioning-a comparison between process models of varying complexity
(2014) In Atmospheric Chemistry and Physics 14(21). p.11853-11869- Abstract
- Biogenic volatile organic compounds (BVOCs) emitted by vegetation play an important role for aerosol mass loadings since the oxidation products of these compounds can take part in the formation and growth of secondary organic aerosols (SOA). The concentrations and properties of BVOCs and their oxidation products in the atmosphere are poorly characterized, which leads to high uncertainties in modeled SOA mass and properties. In this study, the formation of SOA has been modeled along an air-mass trajectory over northern European boreal forest using two aerosol dynamics box models where the prediction of the condensable organics from the gas-phase oxidation of BVOC is handled with schemes of varying complexity. The use of box model... (More)
- Biogenic volatile organic compounds (BVOCs) emitted by vegetation play an important role for aerosol mass loadings since the oxidation products of these compounds can take part in the formation and growth of secondary organic aerosols (SOA). The concentrations and properties of BVOCs and their oxidation products in the atmosphere are poorly characterized, which leads to high uncertainties in modeled SOA mass and properties. In this study, the formation of SOA has been modeled along an air-mass trajectory over northern European boreal forest using two aerosol dynamics box models where the prediction of the condensable organics from the gas-phase oxidation of BVOC is handled with schemes of varying complexity. The use of box model simulations along an air-mass trajectory allows us to compare, under atmospheric relevant conditions, different model parameterizations and their effect on SOA formation. The result of the study shows that the modeled mass concentration of SOA is highly dependent on the organic oxidation scheme used to predict oxidation products. A near-explicit treatment of organic gas-phase oxidation (Master Chemical Mechanism version 3.2) was compared to oxidation schemes that use the volatility basis set (VBS) approach. The resulting SOA mass modeled with different VBS schemes varies by a factor of about 7 depending on how the first-generation oxidation products are parameterized and how they subsequently age (e.g., how fast the gas-phase oxidation products react with the OH radical, how they respond to temperature changes, and if they are allowed to fragment during the aging process). Since the VBS approach is frequently used in regional and global climate models due to its relatively simple treatment of the oxidation products compared to near-explicit oxidation schemes, a better understanding of the above-mentioned processes is needed. Based on the results of this study, fragmentation should be included in order to obtain a realistic SOA formation. Furthermore, compared to the most commonly used VBS schemes, the near-explicit method produces less-but more oxidized-SOA. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/4857281
- author
- Öström, Emilie
LU
; Roldin, Pontus
LU
; Rusanen, A.
; Mogensen, D.
; Kivekäs, Niku
LU
; Väänänen, R.
; Boy, M.
and Swietlicki, Erik
LU
- organization
- publishing date
- 2014
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Atmospheric Chemistry and Physics
- volume
- 14
- issue
- 21
- pages
- 11853 - 11869
- publisher
- Copernicus GmbH
- external identifiers
-
- wos:000344985700018
- scopus:84909592065
- ISSN
- 1680-7324
- DOI
- 10.5194/acp-14-11853-2014
- language
- English
- LU publication?
- yes
- additional info
- The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Nuclear Physics (Faculty of Technology) (011013007), Centre for Environmental and Climate Research (CEC) (011085000), Ergonomics and Aerosol Technology (011025002)
- id
- 427d76df-c140-4362-a98f-3cf16a4f7173 (old id 4857281)
- date added to LUP
- 2016-04-01 10:41:06
- date last changed
- 2022-02-10 05:04:29
@article{427d76df-c140-4362-a98f-3cf16a4f7173, abstract = {{Biogenic volatile organic compounds (BVOCs) emitted by vegetation play an important role for aerosol mass loadings since the oxidation products of these compounds can take part in the formation and growth of secondary organic aerosols (SOA). The concentrations and properties of BVOCs and their oxidation products in the atmosphere are poorly characterized, which leads to high uncertainties in modeled SOA mass and properties. In this study, the formation of SOA has been modeled along an air-mass trajectory over northern European boreal forest using two aerosol dynamics box models where the prediction of the condensable organics from the gas-phase oxidation of BVOC is handled with schemes of varying complexity. The use of box model simulations along an air-mass trajectory allows us to compare, under atmospheric relevant conditions, different model parameterizations and their effect on SOA formation. The result of the study shows that the modeled mass concentration of SOA is highly dependent on the organic oxidation scheme used to predict oxidation products. A near-explicit treatment of organic gas-phase oxidation (Master Chemical Mechanism version 3.2) was compared to oxidation schemes that use the volatility basis set (VBS) approach. The resulting SOA mass modeled with different VBS schemes varies by a factor of about 7 depending on how the first-generation oxidation products are parameterized and how they subsequently age (e.g., how fast the gas-phase oxidation products react with the OH radical, how they respond to temperature changes, and if they are allowed to fragment during the aging process). Since the VBS approach is frequently used in regional and global climate models due to its relatively simple treatment of the oxidation products compared to near-explicit oxidation schemes, a better understanding of the above-mentioned processes is needed. Based on the results of this study, fragmentation should be included in order to obtain a realistic SOA formation. Furthermore, compared to the most commonly used VBS schemes, the near-explicit method produces less-but more oxidized-SOA.}}, author = {{Öström, Emilie and Roldin, Pontus and Rusanen, A. and Mogensen, D. and Kivekäs, Niku and Väänänen, R. and Boy, M. and Swietlicki, Erik}}, issn = {{1680-7324}}, language = {{eng}}, number = {{21}}, pages = {{11853--11869}}, publisher = {{Copernicus GmbH}}, series = {{Atmospheric Chemistry and Physics}}, title = {{Biogenic SOA formation through gas-phase oxidation and gas-to-particle partitioning-a comparison between process models of varying complexity}}, url = {{http://dx.doi.org/10.5194/acp-14-11853-2014}}, doi = {{10.5194/acp-14-11853-2014}}, volume = {{14}}, year = {{2014}}, }