Photonnumber statistics from resonance fluorescence of a twolevel atom near a plasmonic nanoparticle
(2014) In Physical Review A (Atomic, Molecular and Optical Physics) 90(6). p.11063831 Abstract
 The photonnumber statistics from resonance fluorescence of a twolevel atom near a metal nanosphere driven by a laser field with finite bandwidth is studied theoretically. Our analysis shows that all interesting physics here takes place in a small area around the nanosphere where the near field and the atomnanosphere coupling essentially affect the radiative properties of the atom. Computer modeling estimates this area roughly as r≤2a (r is the distance from the center of the nanosphere to the atom), with a being the radius of the nanosphere. At the larger distances, the influence of the nanoparticle vanishes and the atom tends to behave similarly to that in free space. It is shown that the distribution function p(n,T) of the emission... (More)
 The photonnumber statistics from resonance fluorescence of a twolevel atom near a metal nanosphere driven by a laser field with finite bandwidth is studied theoretically. Our analysis shows that all interesting physics here takes place in a small area around the nanosphere where the near field and the atomnanosphere coupling essentially affect the radiative properties of the atom. Computer modeling estimates this area roughly as r≤2a (r is the distance from the center of the nanosphere to the atom), with a being the radius of the nanosphere. At the larger distances, the influence of the nanoparticle vanishes and the atom tends to behave similarly to that in free space. It is shown that the distribution function p(n,T) of the emission probability of n photons in a given time interval T in steadystate resonance fluorescence drastically depends on the atom location around the nanosphere for r≤2a, featuring a characteristic twist in the ridgelike dependence and a convergence time of up to 9μs, two orders of magnitude slower than for the atom in free space. At large distances, the distribution converges to a Gaussian one, as for the atom in free space. The typical convergence time scale at large distances r>2a tends to the convergence time of the atom in free space. There are also two areas symmetrical around the nanosphere in which Ω∼γ and the convergence time goes to zero. This behavior is determined by the interplay of the radiative and nonradiative decay rates of the atom due to the coupling with the metal nanosphere and by the nearfield intensity. Additional parameters are the normalized laser frequency detuning from the atomic resonance and the bandwidth of the incoming laser field. (Less)
Please use this url to cite or link to this publication:
http://lup.lub.lu.se/record/4933646
 author
 Pastukhov, Vladimir ^{LU} ; Vladimirova, Yulia and Zadkov, Victor
 publishing date
 2014
 type
 Contribution to journal
 publication status
 published
 subject
 in
 Physical Review A (Atomic, Molecular and Optical Physics)
 volume
 90
 issue
 6
 pages
 11  063831
 publisher
 American Physical Society (APS)
 external identifiers

 wos:000346824600020
 scopus:84919723718
 ISSN
 10502947
 DOI
 10.1103/PhysRevA.90.063831
 language
 English
 LU publication?
 no
 id
 f3fe7601c4c64664a99e998ed7de5b19 (old id 4933646)
 date added to LUP
 20150115 15:04:56
 date last changed
 20180107 04:31:26
@article{f3fe7601c4c64664a99e998ed7de5b19, abstract = {The photonnumber statistics from resonance fluorescence of a twolevel atom near a metal nanosphere driven by a laser field with finite bandwidth is studied theoretically. Our analysis shows that all interesting physics here takes place in a small area around the nanosphere where the near field and the atomnanosphere coupling essentially affect the radiative properties of the atom. Computer modeling estimates this area roughly as r≤2a (r is the distance from the center of the nanosphere to the atom), with a being the radius of the nanosphere. At the larger distances, the influence of the nanoparticle vanishes and the atom tends to behave similarly to that in free space. It is shown that the distribution function p(n,T) of the emission probability of n photons in a given time interval T in steadystate resonance fluorescence drastically depends on the atom location around the nanosphere for r≤2a, featuring a characteristic twist in the ridgelike dependence and a convergence time of up to 9μs, two orders of magnitude slower than for the atom in free space. At large distances, the distribution converges to a Gaussian one, as for the atom in free space. The typical convergence time scale at large distances r>2a tends to the convergence time of the atom in free space. There are also two areas symmetrical around the nanosphere in which Ω∼γ and the convergence time goes to zero. This behavior is determined by the interplay of the radiative and nonradiative decay rates of the atom due to the coupling with the metal nanosphere and by the nearfield intensity. Additional parameters are the normalized laser frequency detuning from the atomic resonance and the bandwidth of the incoming laser field.}, author = {Pastukhov, Vladimir and Vladimirova, Yulia and Zadkov, Victor}, issn = {10502947}, language = {eng}, number = {6}, pages = {11063831}, publisher = {American Physical Society (APS)}, series = {Physical Review A (Atomic, Molecular and Optical Physics)}, title = {Photonnumber statistics from resonance fluorescence of a twolevel atom near a plasmonic nanoparticle}, url = {http://dx.doi.org/10.1103/PhysRevA.90.063831}, volume = {90}, year = {2014}, }