Advanced

14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference

Yao, Huifeng ; Cui, Yong ; Qian, Deping ; Ponseca, Carlito S. LU ; Honarfar, Alireza LU ; Xu, Ye ; Xin, Jingming ; Chen, Zhenyu ; Hong, Ling and Gao, Bowei , et al. (2019) In Journal of the American Chemical Society 141(19). p.7743-7750
Abstract

Although significant improvements have been achieved for organic photovoltaic cells (OPVs), the top-performing devices still show power conversion efficiencies far behind those of commercialized solar cells. One of the main reasons is the large driving force required for separating electron-hole pairs. Here, we demonstrate an efficiency of 14.7% in the single-junction OPV by using a new polymer donor PTO2 and a nonfullerene acceptor IT-4F. The device possesses an efficient charge generation at a low driving force. Ultrafast transient absorption measurements probe the formation of loosely bound charge pairs with extended lifetime that impedes the recombination of charge carriers in the blend. The theoretical studies reveal that the... (More)

Although significant improvements have been achieved for organic photovoltaic cells (OPVs), the top-performing devices still show power conversion efficiencies far behind those of commercialized solar cells. One of the main reasons is the large driving force required for separating electron-hole pairs. Here, we demonstrate an efficiency of 14.7% in the single-junction OPV by using a new polymer donor PTO2 and a nonfullerene acceptor IT-4F. The device possesses an efficient charge generation at a low driving force. Ultrafast transient absorption measurements probe the formation of loosely bound charge pairs with extended lifetime that impedes the recombination of charge carriers in the blend. The theoretical studies reveal that the molecular electrostatic potential (ESP) between PTO2 and IT-4F is large, and the induced intermolecular electric field may assist the charge generation. The results suggest OPVs have the potential for further improvement by judicious modulation of ESP.

(Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of the American Chemical Society
volume
141
issue
19
pages
8 pages
publisher
The American Chemical Society (ACS)
external identifiers
  • pmid:31017418
  • scopus:85065791685
ISSN
0002-7863
DOI
10.1021/jacs.8b12937
language
English
LU publication?
yes
id
49426145-75a9-4ab2-83a6-15add9eaa615
date added to LUP
2019-05-28 10:35:34
date last changed
2020-04-02 02:32:19
@article{49426145-75a9-4ab2-83a6-15add9eaa615,
  abstract     = {<p>Although significant improvements have been achieved for organic photovoltaic cells (OPVs), the top-performing devices still show power conversion efficiencies far behind those of commercialized solar cells. One of the main reasons is the large driving force required for separating electron-hole pairs. Here, we demonstrate an efficiency of 14.7% in the single-junction OPV by using a new polymer donor PTO2 and a nonfullerene acceptor IT-4F. The device possesses an efficient charge generation at a low driving force. Ultrafast transient absorption measurements probe the formation of loosely bound charge pairs with extended lifetime that impedes the recombination of charge carriers in the blend. The theoretical studies reveal that the molecular electrostatic potential (ESP) between PTO2 and IT-4F is large, and the induced intermolecular electric field may assist the charge generation. The results suggest OPVs have the potential for further improvement by judicious modulation of ESP.</p>},
  author       = {Yao, Huifeng and Cui, Yong and Qian, Deping and Ponseca, Carlito S. and Honarfar, Alireza and Xu, Ye and Xin, Jingming and Chen, Zhenyu and Hong, Ling and Gao, Bowei and Yu, Runnan and Zu, Yunfei and Ma, Wei and Chabera, Pavel and Pullerits, Tönu and Yartsev, Arkady and Gao, Feng and Hou, Jianhui},
  issn         = {0002-7863},
  language     = {eng},
  number       = {19},
  pages        = {7743--7750},
  publisher    = {The American Chemical Society (ACS)},
  series       = {Journal of the American Chemical Society},
  title        = {14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference},
  url          = {http://dx.doi.org/10.1021/jacs.8b12937},
  doi          = {10.1021/jacs.8b12937},
  volume       = {141},
  year         = {2019},
}