Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering

Rasila, Tiina S. ; Pulkkinen, Elsi ; Kiljunen, Saija ; Haapa-Paananen, Saija ; Pajunen, Maria I. ; Salminen, Anu ; Paulin, Lars ; Vihinen, Mauno LU orcid ; Rice, Phoebe A. and Savilahti, Harri (2018) In Nucleic Acids Research 46(9). p.4649-4661
Abstract

The phage Mu DNA transposition system provides a versatile species non-specific tool for molecular biology, genetic engineering and genome modification applications. Mu transposition is catalyzed by MuA transposase, with DNA cleavage and integration reactions ultimately attaching the transposon DNA to target DNA. To improve the activity of the Mu DNA transposition machinery, we mutagenized MuA protein and screened for hyperactivity-causing substitutions using an in vivo assay. The individual activity-enhancing substitutions were mapped onto the MuA-DNA complex structure, containing a tetramer of MuA transposase, two Mu end segments and a target DNA. This analysis, combined with the varying effect of the mutations in different assays,... (More)

The phage Mu DNA transposition system provides a versatile species non-specific tool for molecular biology, genetic engineering and genome modification applications. Mu transposition is catalyzed by MuA transposase, with DNA cleavage and integration reactions ultimately attaching the transposon DNA to target DNA. To improve the activity of the Mu DNA transposition machinery, we mutagenized MuA protein and screened for hyperactivity-causing substitutions using an in vivo assay. The individual activity-enhancing substitutions were mapped onto the MuA-DNA complex structure, containing a tetramer of MuA transposase, two Mu end segments and a target DNA. This analysis, combined with the varying effect of the mutations in different assays, implied that the mutations exert their effects in several ways, including optimizing protein-protein and protein-DNA contacts. Based on these insights, we engineered highly hyperactive versions of MuA, by combining several synergistically acting substitutions located in different subdomains of the protein. Purified hyperactive MuA variants are now ready for use as second-generation tools in a variety of Mu-based DNA transposition applications. These variants will also widen the scope of Mu-based gene transfer technologies toward medical applications such as human gene therapy. Moreover, the work provides a platform for further design of custom trans-posases.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Nucleic Acids Research
volume
46
issue
9
pages
13 pages
publisher
Oxford University Press
external identifiers
  • scopus:85061135648
ISSN
0305-1048
DOI
10.1093/nar/gkx1281
language
English
LU publication?
yes
id
4e20b3a5-10d3-40dd-a216-d13970e8ec33
date added to LUP
2019-02-19 14:16:46
date last changed
2022-04-25 21:42:21
@article{4e20b3a5-10d3-40dd-a216-d13970e8ec33,
  abstract     = {{<p>The phage Mu DNA transposition system provides a versatile species non-specific tool for molecular biology, genetic engineering and genome modification applications. Mu transposition is catalyzed by MuA transposase, with DNA cleavage and integration reactions ultimately attaching the transposon DNA to target DNA. To improve the activity of the Mu DNA transposition machinery, we mutagenized MuA protein and screened for hyperactivity-causing substitutions using an in vivo assay. The individual activity-enhancing substitutions were mapped onto the MuA-DNA complex structure, containing a tetramer of MuA transposase, two Mu end segments and a target DNA. This analysis, combined with the varying effect of the mutations in different assays, implied that the mutations exert their effects in several ways, including optimizing protein-protein and protein-DNA contacts. Based on these insights, we engineered highly hyperactive versions of MuA, by combining several synergistically acting substitutions located in different subdomains of the protein. Purified hyperactive MuA variants are now ready for use as second-generation tools in a variety of Mu-based DNA transposition applications. These variants will also widen the scope of Mu-based gene transfer technologies toward medical applications such as human gene therapy. Moreover, the work provides a platform for further design of custom trans-posases.</p>}},
  author       = {{Rasila, Tiina S. and Pulkkinen, Elsi and Kiljunen, Saija and Haapa-Paananen, Saija and Pajunen, Maria I. and Salminen, Anu and Paulin, Lars and Vihinen, Mauno and Rice, Phoebe A. and Savilahti, Harri}},
  issn         = {{0305-1048}},
  language     = {{eng}},
  month        = {{05}},
  number       = {{9}},
  pages        = {{4649--4661}},
  publisher    = {{Oxford University Press}},
  series       = {{Nucleic Acids Research}},
  title        = {{Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering}},
  url          = {{http://dx.doi.org/10.1093/nar/gkx1281}},
  doi          = {{10.1093/nar/gkx1281}},
  volume       = {{46}},
  year         = {{2018}},
}