Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Structural and Functional Analyses of Xyloside-primed Glycosaminoglycans

Persson, Andrea LU (2017)
Abstract
Glycosaminoglycans (GAGs) are polysaccharides produced by essentially all mammalian cells. Due to their enormous structural diversity, they are involved in many biological processes both in health and disease, including all stages of tumor progression. GAGs are normally attached to a core protein as a part of a proteoglycan; however, GAG biosynthesis can be induced by compounds composed of a xylose residue and an aglycon, xylopyranosides, or, more commonly, xylosides. Xylosides have been used for more than 40 years to study GAG biosynthesis and the effects of altered proteoglycan production in different cellular processes. However, little is known about the detailed structure and function of xyloside-primed GAGs. We have previously shown... (More)
Glycosaminoglycans (GAGs) are polysaccharides produced by essentially all mammalian cells. Due to their enormous structural diversity, they are involved in many biological processes both in health and disease, including all stages of tumor progression. GAGs are normally attached to a core protein as a part of a proteoglycan; however, GAG biosynthesis can be induced by compounds composed of a xylose residue and an aglycon, xylopyranosides, or, more commonly, xylosides. Xylosides have been used for more than 40 years to study GAG biosynthesis and the effects of altered proteoglycan production in different cellular processes. However, little is known about the detailed structure and function of xyloside-primed GAGs. We have previously shown that the xyloside 2,6-hydroxynaphthyl β-D-xylopyranoside, XylNapOH, reduces the growth of cancer cells, but not normal cells, and suggested that the effect is related to the XylNapOH-primed GAGs. This served as a benchmark as we aimed to increase our knowledge about xylosides and xyloside-primed GAGs.

We started synoptically by investigating GAG formation, proportion of heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS), and effect on growth of breast carcinoma cells, HCC70, and normal breast fibroblasts, CCD-1095Sk cells, by xylosides where the xylose residue was separated from the aglycon by linkers of different length. Due to the apparent lack of relationship between the relative amount and composition of the xyloside-primed GAGs and the effect on cell growth, the xyloside-primed GAGs were investigated in more detail. We isolated GAGs derived from HCC70 cells and CCD-1095Sk cells primed on XylNapOH and the non-toxic 2-naphthyl β-D-xylopyranoside, XylNap, and showed that CS/DS from HCC70 cells primed on XylNapOH and XylNap had a cytotoxic effect on both HCC70 cells and CCD-1095Sk cells. Furthermore, the HS from HCC70 cells primed on XylNap inhibited this effect. In contrast, neither the CS/DS nor HS from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on cell growth. The cytotoxic effect was related to the disaccharide composition of the xyloside-primed GAGs, which differed between HCC70 cells and CCD-1095Sk cells, but was similar when the GAGs where derived from the same cell line.

To further investigate the structural requirements for the cytotoxic effect, XylNap-primed GAGs from HCC70 cells and CCD-1095Sk cells were structurally characterized using a novel LC-MS/MS approach in combination with disaccharide fingerprinting and cell growth studies. The data revealed candidates for the cytotoxic effect including internal saccharides, linkage regions, and GAGs composed entirely of CS. Furthermore, the XylNap-primed GAGs were discovered to be structurally heterogeneous and to contain previously undescribed modifications.

Finally, a systematic investigation of the influence of xyloside concentration, type of xyloside, and type of cell on the structure of xyloside-primed GAGs was performed, showing that it is possible to produce large quantities of xyloside-primed GAGs and to fine-tune their structure by adjusting these parameters. Our data demonstrate that xylosides and xyloside-primed GAGs may be used as tools for various biochemical and biotechnological applications, important from both the basic science and medical points of view.
(Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Turnbull, Jeremy, University of Liverpool, United Kingdom
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Glycosaminoglycan, Xyloside, Chondroitin sulfate, Dermatan sulfate, Heparan sulfate, Proteoglycan, Cancer
pages
93 pages
publisher
Lund University: Faculty of Medicine
defense location
Belfragesalen, BMC D15, Klinikgatan 32 i Lund
defense date
2017-11-10 09:00:00
ISBN
978-91-7619-534-5
language
English
LU publication?
yes
additional info
ISSN: 1652-8220 Lund University, Faculty of Medicine Doctoral Dissertation Series 2017:152
id
4f2113b8-00b7-4b28-b615-63e85eb7be5e
date added to LUP
2017-10-06 10:36:58
date last changed
2019-11-19 13:49:27
@phdthesis{4f2113b8-00b7-4b28-b615-63e85eb7be5e,
  abstract     = {{Glycosaminoglycans (GAGs) are polysaccharides produced by essentially all mammalian cells. Due to their enormous structural diversity, they are involved in many biological processes both in health and disease, including all stages of tumor progression. GAGs are normally attached to a core protein as a part of a proteoglycan; however, GAG biosynthesis can be induced by compounds composed of a xylose residue and an aglycon, xylopyranosides, or, more commonly, xylosides. Xylosides have been used for more than 40 years to study GAG biosynthesis and the effects of altered proteoglycan production in different cellular processes. However, little is known about the detailed structure and function of xyloside-primed GAGs. We have previously shown that the xyloside 2,6-hydroxynaphthyl β-D-xylopyranoside, XylNapOH, reduces the growth of cancer cells, but not normal cells, and suggested that the effect is related to the XylNapOH-primed GAGs. This served as a benchmark as we aimed to increase our knowledge about xylosides and xyloside-primed GAGs.<br/><br/>We started synoptically by investigating GAG formation, proportion of heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS), and effect on growth of breast carcinoma cells, HCC70, and normal breast fibroblasts, CCD-1095Sk cells, by xylosides where the xylose residue was separated from the aglycon by linkers of different length. Due to the apparent lack of relationship between the relative amount and composition of the xyloside-primed GAGs and the effect on cell growth, the xyloside-primed GAGs were investigated in more detail. We isolated GAGs derived from HCC70 cells and CCD-1095Sk cells primed on XylNapOH and the non-toxic 2-naphthyl β-D-xylopyranoside, XylNap, and showed that CS/DS from HCC70 cells primed on XylNapOH and XylNap had a cytotoxic effect on both HCC70 cells and CCD-1095Sk cells. Furthermore, the HS from HCC70 cells primed on XylNap inhibited this effect. In contrast, neither the CS/DS nor HS from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on cell growth. The cytotoxic effect was related to the disaccharide composition of the xyloside-primed GAGs, which differed between HCC70 cells and CCD-1095Sk cells, but was similar when the GAGs where derived from the same cell line. <br/><br/>To further investigate the structural requirements for the cytotoxic effect, XylNap-primed GAGs from HCC70 cells and CCD-1095Sk cells were structurally characterized using a novel LC-MS/MS approach in combination with disaccharide fingerprinting and cell growth studies. The data revealed candidates for the cytotoxic effect including internal saccharides, linkage regions, and GAGs composed entirely of CS. Furthermore, the XylNap-primed GAGs were discovered to be structurally heterogeneous and to contain previously undescribed modifications. <br/><br/>Finally, a systematic investigation of the influence of xyloside concentration, type of xyloside, and type of cell on the structure of xyloside-primed GAGs was performed, showing that it is possible to produce large quantities of xyloside-primed GAGs and to fine-tune their structure by adjusting these parameters. Our data demonstrate that xylosides and xyloside-primed GAGs may be used as tools for various biochemical and biotechnological applications, important from both the basic science and medical points of view.<br/>}},
  author       = {{Persson, Andrea}},
  isbn         = {{978-91-7619-534-5}},
  keywords     = {{Glycosaminoglycan; Xyloside; Chondroitin sulfate; Dermatan sulfate; Heparan sulfate; Proteoglycan; Cancer}},
  language     = {{eng}},
  publisher    = {{Lund University: Faculty of Medicine}},
  school       = {{Lund University}},
  title        = {{Structural and Functional Analyses of Xyloside-primed Glycosaminoglycans}},
  year         = {{2017}},
}