Advanced

Gasoline PPC: A parametric study of late cycle mixing conditions using a predictive two-zone SRM modeling tool

Lundgren, Marcus LU ; Tuner, Martin LU ; Johansson, Bengt LU ; Bjerkborn, Simon; Frojd, Karin; Andersson, Arne; Mauss, Fabian LU and Jiang, Bincheng (2013) SAE/KSAE 2013 International Powertrains, Fuels and Lubricants Meeting, FFL 2013 In SAE/KSAE 2013 International Powertrains, Fuels and Lubricants Meeting, FFL 2013 11.
Abstract

The relatively new combustion concept known as partially premixed combustion (PPC) has high efficiency and low emissions. However, there are still challenges when it comes to fully understanding and implementing PPC. Thus a predictive combustion tool was used to gain further insight into the combustion process in late cycle mixing. The modeling tool is a stochastic reactor model (SRM) based on probability density functions (PDF). The model requires less computational time than a similar study using computational fluid dynamics (CFD). A novel approach with a two-zone SRM was used to capture the behavior of the partially premixed or stratified zones prior to ignition. This study focuses on PPC mixing conditions and the use of an efficient... (More)

The relatively new combustion concept known as partially premixed combustion (PPC) has high efficiency and low emissions. However, there are still challenges when it comes to fully understanding and implementing PPC. Thus a predictive combustion tool was used to gain further insight into the combustion process in late cycle mixing. The modeling tool is a stochastic reactor model (SRM) based on probability density functions (PDF). The model requires less computational time than a similar study using computational fluid dynamics (CFD). A novel approach with a two-zone SRM was used to capture the behavior of the partially premixed or stratified zones prior to ignition. This study focuses on PPC mixing conditions and the use of an efficient analysis approach. It was done in three steps: a validation of the two-zone SRM against CFD and experimental data, a parametric study using a design of experiment (DOE) approach to late cycle mixing conditions, and analyses of fuel mass distribution with time-resolved probability density functions (TPDF). Results from the investigation show that the two-zone SRM is suitable for prediction of the PPC conditions and is able to run simulations at an average of 25 min/cycle. The findings of the parametric study showed, that a higher mixing intensity is preferable to longer mixing duration before the start of combustion as it decreases pressure rise rate without penalizing combustion efficiency. The TPDF plots offer a good alternative when presenting mixture fraction distributions. However, they may be more suited to smaller amounts of data than are presented in this investigation.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
in
SAE/KSAE 2013 International Powertrains, Fuels and Lubricants Meeting, FFL 2013
volume
11
pages
17 pages
conference name
SAE/KSAE 2013 International Powertrains, Fuels and Lubricants Meeting, FFL 2013
external identifiers
  • scopus:84890354689
DOI
10.4271/2013-01-2621
language
English
LU publication?
yes
id
4f8743b6-70e0-4da6-9cda-2101463ca0e6
date added to LUP
2018-03-28 09:44:25
date last changed
2018-04-05 13:15:50
@inproceedings{4f8743b6-70e0-4da6-9cda-2101463ca0e6,
  abstract     = {<p>The relatively new combustion concept known as partially premixed combustion (PPC) has high efficiency and low emissions. However, there are still challenges when it comes to fully understanding and implementing PPC. Thus a predictive combustion tool was used to gain further insight into the combustion process in late cycle mixing. The modeling tool is a stochastic reactor model (SRM) based on probability density functions (PDF). The model requires less computational time than a similar study using computational fluid dynamics (CFD). A novel approach with a two-zone SRM was used to capture the behavior of the partially premixed or stratified zones prior to ignition. This study focuses on PPC mixing conditions and the use of an efficient analysis approach. It was done in three steps: a validation of the two-zone SRM against CFD and experimental data, a parametric study using a design of experiment (DOE) approach to late cycle mixing conditions, and analyses of fuel mass distribution with time-resolved probability density functions (TPDF). Results from the investigation show that the two-zone SRM is suitable for prediction of the PPC conditions and is able to run simulations at an average of 25 min/cycle. The findings of the parametric study showed, that a higher mixing intensity is preferable to longer mixing duration before the start of combustion as it decreases pressure rise rate without penalizing combustion efficiency. The TPDF plots offer a good alternative when presenting mixture fraction distributions. However, they may be more suited to smaller amounts of data than are presented in this investigation.</p>},
  author       = {Lundgren, Marcus and Tuner, Martin and Johansson, Bengt and Bjerkborn, Simon and Frojd, Karin and Andersson, Arne and Mauss, Fabian and Jiang, Bincheng},
  booktitle    = {SAE/KSAE 2013 International Powertrains, Fuels and Lubricants Meeting, FFL 2013},
  language     = {eng},
  pages        = {17},
  title        = {Gasoline PPC: A parametric study of late cycle mixing conditions using a predictive two-zone SRM modeling tool},
  url          = {http://dx.doi.org/10.4271/2013-01-2621},
  volume       = {11},
  year         = {2013},
}