Advanced

Microstructure based modeling of residual stresses in WC-12Co sprayed coatings.

Klusemann, Benjamin; Denzer, Ralf LU and Svendsen, Bob (2012) In Journal of Thermal Spray Technology 21. p.96-107
Abstract
In this study, the residual stresses in a thermal-sprayed tungsten carbide-cobalt coating are numerically investigated after a plasma-spraying process and after a subsequent roller-burnishing process. The results from the simulations are compared to the first experimental results obtained by a classical hole-drilling method. First, effective material parameters are identified by a detailed microstructure FE model based on scanning electron microscope (SEM) images of the coating. Then, two types of simulations are performed with regard to thermally induced residual stresses as well as the rolling process. In the first model, the microstructural details like pores, interface, and surface roughness are modeled in detail based on light... (More)
In this study, the residual stresses in a thermal-sprayed tungsten carbide-cobalt coating are numerically investigated after a plasma-spraying process and after a subsequent roller-burnishing process. The results from the simulations are compared to the first experimental results obtained by a classical hole-drilling method. First, effective material parameters are identified by a detailed microstructure FE model based on scanning electron microscope (SEM) images of the coating. Then, two types of simulations are performed with regard to thermally induced residual stresses as well as the rolling process. In the first model, the microstructural details like pores, interface, and surface roughness are modeled in detail based on light microscope (LM) images. In the second model, the coating and substrate are assumed to be ideal homogeneous, and the interface and surface to be as planar. Furthermore, two types of boundary conditions are investigated: (1), the periodic boundary conditions for the left and right faces, and, (2) when these faces are free. It is shown that, for large sample sizes, the results nearly coincide. The simulation results show increasing compressive residual stresses in thickness direction after the rolling process, which is in qualitative agreement with the experiment. A layer of tensile stresses is obtained at the surface in the simulation which could not be captured by the hole-drilling method. Furthermore, an investigation with homogeneous material behavior is performed in 3D. (Less)
Please use this url to cite or link to this publication:
author
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Thermal Spray Technology
volume
21
pages
96 - 107
publisher
Springer
external identifiers
  • scopus:84855684018
ISSN
1544-1016
DOI
10.1007/s11666-011-9690-5
language
English
LU publication?
no
id
774cc843-3cce-4158-be9c-4d9b1721b1a5 (old id 5049612)
date added to LUP
2015-03-11 11:27:24
date last changed
2017-08-20 03:12:02
@article{774cc843-3cce-4158-be9c-4d9b1721b1a5,
  abstract     = {In this study, the residual stresses in a thermal-sprayed tungsten carbide-cobalt coating are numerically investigated after a plasma-spraying process and after a subsequent roller-burnishing process. The results from the simulations are compared to the first experimental results obtained by a classical hole-drilling method. First, effective material parameters are identified by a detailed microstructure FE model based on scanning electron microscope (SEM) images of the coating. Then, two types of simulations are performed with regard to thermally induced residual stresses as well as the rolling process. In the first model, the microstructural details like pores, interface, and surface roughness are modeled in detail based on light microscope (LM) images. In the second model, the coating and substrate are assumed to be ideal homogeneous, and the interface and surface to be as planar. Furthermore, two types of boundary conditions are investigated: (1), the periodic boundary conditions for the left and right faces, and, (2) when these faces are free. It is shown that, for large sample sizes, the results nearly coincide. The simulation results show increasing compressive residual stresses in thickness direction after the rolling process, which is in qualitative agreement with the experiment. A layer of tensile stresses is obtained at the surface in the simulation which could not be captured by the hole-drilling method. Furthermore, an investigation with homogeneous material behavior is performed in 3D.},
  author       = {Klusemann, Benjamin and Denzer, Ralf and Svendsen, Bob},
  issn         = {1544-1016},
  language     = {eng},
  pages        = {96--107},
  publisher    = {Springer},
  series       = {Journal of Thermal Spray Technology},
  title        = {Microstructure based modeling of residual stresses in WC-12Co sprayed coatings.},
  url          = {http://dx.doi.org/10.1007/s11666-011-9690-5},
  volume       = {21},
  year         = {2012},
}