Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Plasma proteomic changes in response to exercise training are associated with cardiorespiratory fitness adaptations

Robbins, Jeremy M. ; Rao, Prashant ; Deng, Shuliang ; Keyes, Michelle J. ; Tahir, Usman A. ; Katz, Daniel H. ; Jean Beltran, Pierre M. ; Marchildon, François ; Barber, Jacob L. and Peterson, Bennet , et al. (2023) In JCI Insight 8(7).
Abstract

Regular exercise leads to widespread salutary effects, and there is increasing recognition that exercise-stimulated circulating proteins can impart health benefits. Despite this, limited data exist regarding the plasma proteomic changes that occur in response to regular exercise. Here, we perform large-scale plasma proteomic profiling in 654 healthy human study participants before and after a supervised, 20-week endurance exercise training intervention. We identify hundreds of circulating proteins that are modulated, many of which are known to be secreted. We highlight proteins involved in angiogenesis, iron homeostasis, and the extracellular matrix, many of which are novel, including training-induced increases in fibroblast activation... (More)

Regular exercise leads to widespread salutary effects, and there is increasing recognition that exercise-stimulated circulating proteins can impart health benefits. Despite this, limited data exist regarding the plasma proteomic changes that occur in response to regular exercise. Here, we perform large-scale plasma proteomic profiling in 654 healthy human study participants before and after a supervised, 20-week endurance exercise training intervention. We identify hundreds of circulating proteins that are modulated, many of which are known to be secreted. We highlight proteins involved in angiogenesis, iron homeostasis, and the extracellular matrix, many of which are novel, including training-induced increases in fibroblast activation protein (FAP), a membrane-bound and circulating protein relevant in body-composition homeostasis. We relate protein changes to training-induced maximal oxygen uptake adaptations and validate our top findings in an external exercise cohort. Furthermore, we show that FAP is positively associated with survival in 3 separate, population-based cohorts.

(Less)
Please use this url to cite or link to this publication:
@article{526fb415-88ec-44ef-9da3-5b8332f1a408,
  abstract     = {{<p>Regular exercise leads to widespread salutary effects, and there is increasing recognition that exercise-stimulated circulating proteins can impart health benefits. Despite this, limited data exist regarding the plasma proteomic changes that occur in response to regular exercise. Here, we perform large-scale plasma proteomic profiling in 654 healthy human study participants before and after a supervised, 20-week endurance exercise training intervention. We identify hundreds of circulating proteins that are modulated, many of which are known to be secreted. We highlight proteins involved in angiogenesis, iron homeostasis, and the extracellular matrix, many of which are novel, including training-induced increases in fibroblast activation protein (FAP), a membrane-bound and circulating protein relevant in body-composition homeostasis. We relate protein changes to training-induced maximal oxygen uptake adaptations and validate our top findings in an external exercise cohort. Furthermore, we show that FAP is positively associated with survival in 3 separate, population-based cohorts.</p>}},
  author       = {{Robbins, Jeremy M. and Rao, Prashant and Deng, Shuliang and Keyes, Michelle J. and Tahir, Usman A. and Katz, Daniel H. and Jean Beltran, Pierre M. and Marchildon, François and Barber, Jacob L. and Peterson, Bennet and Gao, Yan and Correa, Adolfo and Wilson, James G. and Smith, J. Gustav and Cohen, Paul and Ross, Robert and Bouchard, Claude and Sarzynski, Mark A. and Gerszten, Robert E.}},
  issn         = {{2379-3708}},
  language     = {{eng}},
  month        = {{04}},
  number       = {{7}},
  publisher    = {{The American Society for Clinical Investigation}},
  series       = {{JCI Insight}},
  title        = {{Plasma proteomic changes in response to exercise training are associated with cardiorespiratory fitness adaptations}},
  url          = {{http://dx.doi.org/10.1172/jci.insight.165867}},
  doi          = {{10.1172/jci.insight.165867}},
  volume       = {{8}},
  year         = {{2023}},
}