Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Target and Laser Pulse Optimization for Laser-Driven Ion Acceleration

Permogorov, Alexander LU (2021)
Abstract
The research presented in this thesis is primarily focused on experimental investigations of laser-driven ion acceleration from solid targets via the target normal sheath acceleration mechanism. In particular, ways of optimizing the absorption of the laser pulse energy by free plasma electrons in the target, or modifying the shape of the accelerating electron sheath were addressed. The aim of this work was to increase the efficiency, and maximum proton energy that could be obtained with a given laser system, and to reduce the divergence of the beams of accelerated protons.

The shape of the electrostatic sheath was indirectly influenced by using laser micromachining to modify the front surface of the target, on which the laser... (More)
The research presented in this thesis is primarily focused on experimental investigations of laser-driven ion acceleration from solid targets via the target normal sheath acceleration mechanism. In particular, ways of optimizing the absorption of the laser pulse energy by free plasma electrons in the target, or modifying the shape of the accelerating electron sheath were addressed. The aim of this work was to increase the efficiency, and maximum proton energy that could be obtained with a given laser system, and to reduce the divergence of the beams of accelerated protons.

The shape of the electrostatic sheath was indirectly influenced by using laser micromachining to modify the front surface of the target, on which the laser pulse is incident. The absorption of the laser pulse was enhanced by either placing nanostructures on the front side of the foil target, or by manipulating the temporal profile of the ultrafast part of the laser pulse before its interaction with an ultrathin target.

It is important to ensure the survival of the target by using a laser pulse with very high temporal contrast. A double plasma mirror (DPM) was designed and implemented for this purpose. Design considerations and the optimization of the performance of the DPM, which is now used routinely at the Lund High-Power Laser Facility during laser-solid interaction studies, are discussed. Sufficiently high temporal contrast was achieved, and an increase was seen in the maximum proton kinetic energy when using targets with nanowire and foam structures on the surface. Efficient ion acceleration from ultrathin targets with a thickness down to 10 nm was observed as well.

When an ultrafast laser pulse interacts with an ultrathin foil, the temporal shape of the electric field of the pulse affects the laser--solid interaction, and a slightly positively chirped pulse was found to increase the maximum kinetic energy of the accelerated protons.

Laser-solid interactions at very high intensities are known to have shot-to-shot instabilities, motivating the use of single-shot diagnostics. The ion spectra in the forward direction were recorded using a Thomson parabola spectrometer, and in the backward direction with a magnetic dipole spectrometer. The intensities of the reflected and transmitted fractions of the laser pulse were also recorded on a shot-to-shot basis. In addition, a proton spatial profile monitor could be inserted to spatially characterize the proton bunch accelerated in the forward direction. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Research Scientist Schnürer, Mattias, Max-Born Institute, Germany.
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Terawatt laser, Target normal sheath acceleration, laser-driven ion acceleration, proton acceleration, double plasma mirror, Thomson parabola spectrometer, Fysicumarkivet A:2021:Permogorov
pages
143 pages
publisher
Department of Physics, Lund University
defense location
Lecture Hall Rydbergsalen, Department of Physics, Professorsgatan 1, Faculty of Engineering LTH, Lund University, Lund.
defense date
2021-10-01 09:15:00
ISSN
0281-2762
ISBN
978-91-7895-989-1
978-91-7895-990-7
language
English
LU publication?
yes
id
53133d03-d9fa-423c-bbdc-75e1e30a7e85
date added to LUP
2021-09-06 11:26:15
date last changed
2021-09-13 16:09:19
@phdthesis{53133d03-d9fa-423c-bbdc-75e1e30a7e85,
  abstract     = {{The research presented in this thesis is primarily focused on experimental investigations of laser-driven ion acceleration from solid targets via the target normal sheath acceleration mechanism. In particular, ways of optimizing the absorption of the laser pulse energy by free plasma electrons in the target, or modifying the shape of the accelerating electron sheath were addressed. The aim of this work was to increase the efficiency, and maximum proton energy that could be obtained with a given laser system, and to reduce the divergence of the beams of accelerated protons.<br/><br/>The shape of the electrostatic sheath was indirectly influenced by using laser micromachining to modify the front surface of the target, on which the laser pulse is incident. The absorption of the laser pulse was enhanced by either placing nanostructures on the front side of the foil target, or by manipulating the temporal profile of the ultrafast part of the laser pulse before its interaction with an ultrathin target.<br/><br/>It is important to ensure the survival of the target by using a laser pulse with very high temporal contrast. A double plasma mirror (DPM) was designed and implemented for this purpose. Design considerations and the optimization of the performance of the DPM, which is now used routinely at the Lund High-Power Laser Facility during laser-solid interaction studies, are discussed. Sufficiently high temporal contrast was achieved, and an increase was seen in the maximum proton kinetic energy when using targets with nanowire and foam structures on the surface. Efficient ion acceleration from ultrathin targets with a thickness down to 10 nm was observed as well.<br/><br/>When an ultrafast laser pulse interacts with an ultrathin foil, the temporal shape of the electric field of the pulse affects the laser--solid interaction, and a slightly positively chirped pulse was found to increase the maximum kinetic energy of the accelerated protons.<br/><br/>Laser-solid interactions at very high intensities are known to have shot-to-shot instabilities, motivating the use of single-shot diagnostics. The ion spectra in the forward direction were recorded using a Thomson parabola spectrometer, and in the backward direction with a magnetic dipole spectrometer. The intensities of the reflected and transmitted fractions of the laser pulse were also recorded on a shot-to-shot basis. In addition, a proton spatial profile monitor could be inserted to spatially characterize the proton bunch accelerated in the forward direction.}},
  author       = {{Permogorov, Alexander}},
  isbn         = {{978-91-7895-989-1}},
  issn         = {{0281-2762}},
  keywords     = {{Terawatt laser; Target normal sheath acceleration; laser-driven ion acceleration; proton acceleration; double plasma mirror; Thomson parabola spectrometer; Fysicumarkivet A:2021:Permogorov}},
  language     = {{eng}},
  month        = {{09}},
  publisher    = {{Department of Physics, Lund University}},
  school       = {{Lund University}},
  title        = {{Target and Laser Pulse Optimization for Laser-Driven Ion Acceleration}},
  url          = {{https://lup.lub.lu.se/search/files/102071227/Alexander_Permogorov_complete.pdf}},
  year         = {{2021}},
}