Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Of gains and losses : SAMD9/SAMD9L and monosomy 7 in myelodysplastic syndrome

Cammenga, Jörg LU (2024) In Experimental Hematology 134.
Abstract

SAMD9 and SAMD9L are two interferon-regulated genes located adjacent to each other on chromosome 7q21.2. Germline gain-of-function (GL GOF) mutations in SAMD9/SAMD9L are the genetic cause of MIRAGE syndrome, ataxia-pancytopenia (ATXPC) syndrome, myeloid leukemia syndrome with monosomy 7 (MLSM7), refractory cytopenia of childhood (RCC), transient monosomy 7 in children, SAMD9L-associated autoinflammatory disease (SAAD), and a proportion of inherited aplastic anemia and bone marrow failure syndromes. The myeloid neoplasms associated with GL GOF SAMD9/SAMD9L mutations have been included in the World Health Organization (WHO) 2022 classification. The discovery of SAMD9/SAMD9L-related diseases has revealed some interesting pathobiological... (More)

SAMD9 and SAMD9L are two interferon-regulated genes located adjacent to each other on chromosome 7q21.2. Germline gain-of-function (GL GOF) mutations in SAMD9/SAMD9L are the genetic cause of MIRAGE syndrome, ataxia-pancytopenia (ATXPC) syndrome, myeloid leukemia syndrome with monosomy 7 (MLSM7), refractory cytopenia of childhood (RCC), transient monosomy 7 in children, SAMD9L-associated autoinflammatory disease (SAAD), and a proportion of inherited aplastic anemia and bone marrow failure syndromes. The myeloid neoplasms associated with GL GOF SAMD9/SAMD9L mutations have been included in the World Health Organization (WHO) 2022 classification. The discovery of SAMD9/SAMD9L-related diseases has revealed some interesting pathobiological mechanisms, such as a high rate of primary somatic compensation, with one of the mechanisms being (transient) monosomy 7 a mechanism also described as “adaption by aneuploidy.” The somatic compensation in the blood can complicate the diagnosis of SAMD9/SAMD9L-related disease when relying on hematopoietic tissues for diagnosis. Recently, GL loss-of function (LOF) mutations have been identified in older individuals with myeloid malignancies in accordance with a mouse model of SAMD9L loss that develops a myelodysplastic syndrome (MDS)-like disease late in life. The discovery of SAMD9/SAMD9L-associated syndromes has resulted in a deeper understanding of the genetics and biology of diseases/syndromes that were previously oblivious and thought to be unrelated to each other. Besides giving an overview of the literature, this review wants to also provide some practical guidance for the classification of SAMD9/SAMD9L variants that is complicated by the nonrecurrent nature of these mutations but also by the fact that both GL GOF, as well as loss-of-function mutations, have been identified.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Experimental Hematology
volume
134
article number
104217
publisher
Elsevier
external identifiers
  • pmid:38649131
  • scopus:85192086024
ISSN
0301-472X
DOI
10.1016/j.exphem.2024.104217
language
English
LU publication?
yes
id
542fff93-c990-4a67-97a4-87fe90cb2db1
date added to LUP
2024-05-21 13:14:46
date last changed
2024-05-21 13:15:06
@article{542fff93-c990-4a67-97a4-87fe90cb2db1,
  abstract     = {{<p>SAMD9 and SAMD9L are two interferon-regulated genes located adjacent to each other on chromosome 7q21.2. Germline gain-of-function (GL GOF) mutations in SAMD9/SAMD9L are the genetic cause of MIRAGE syndrome, ataxia-pancytopenia (ATXPC) syndrome, myeloid leukemia syndrome with monosomy 7 (MLSM7), refractory cytopenia of childhood (RCC), transient monosomy 7 in children, SAMD9L-associated autoinflammatory disease (SAAD), and a proportion of inherited aplastic anemia and bone marrow failure syndromes. The myeloid neoplasms associated with GL GOF SAMD9/SAMD9L mutations have been included in the World Health Organization (WHO) 2022 classification. The discovery of SAMD9/SAMD9L-related diseases has revealed some interesting pathobiological mechanisms, such as a high rate of primary somatic compensation, with one of the mechanisms being (transient) monosomy 7 a mechanism also described as “adaption by aneuploidy.” The somatic compensation in the blood can complicate the diagnosis of SAMD9/SAMD9L-related disease when relying on hematopoietic tissues for diagnosis. Recently, GL loss-of function (LOF) mutations have been identified in older individuals with myeloid malignancies in accordance with a mouse model of SAMD9L loss that develops a myelodysplastic syndrome (MDS)-like disease late in life. The discovery of SAMD9/SAMD9L-associated syndromes has resulted in a deeper understanding of the genetics and biology of diseases/syndromes that were previously oblivious and thought to be unrelated to each other. Besides giving an overview of the literature, this review wants to also provide some practical guidance for the classification of SAMD9/SAMD9L variants that is complicated by the nonrecurrent nature of these mutations but also by the fact that both GL GOF, as well as loss-of-function mutations, have been identified.</p>}},
  author       = {{Cammenga, Jörg}},
  issn         = {{0301-472X}},
  language     = {{eng}},
  publisher    = {{Elsevier}},
  series       = {{Experimental Hematology}},
  title        = {{Of gains and losses : SAMD9/SAMD9L and monosomy 7 in myelodysplastic syndrome}},
  url          = {{http://dx.doi.org/10.1016/j.exphem.2024.104217}},
  doi          = {{10.1016/j.exphem.2024.104217}},
  volume       = {{134}},
  year         = {{2024}},
}