Advanced

Emissions from Fires Consequences for Human Safety and the Environment

Blomqvist, Per LU (2005)
Abstract (Swedish)
Popular Abstract in Swedish

Bränder utgör en risk för människor p.g.a. värmen samt de utsläpp som produceras från en brand. Man kan tydligt se från brandstatistik, att det faktiskt är brandgaserna som dödar och skadar många människor. Vidare produceras från bränder ämnen som inte har en direkt effekt, men som i stället kan ge indirekta skador. Vissa av dessa ämnen är kända för att ha en långsiktig effekt på människor och bränder kan utgöra en signifikant utsläppskälla av sådana ämnen till miljön.



Det har länge varit känt att sammansättningen av en brands utsläpp är viktig för brandens konsekvenser, men detaljerad kunskap saknas i många fall. Speciellt saknas detaljerade kemiska mätningar från storskaliga... (More)
Popular Abstract in Swedish

Bränder utgör en risk för människor p.g.a. värmen samt de utsläpp som produceras från en brand. Man kan tydligt se från brandstatistik, att det faktiskt är brandgaserna som dödar och skadar många människor. Vidare produceras från bränder ämnen som inte har en direkt effekt, men som i stället kan ge indirekta skador. Vissa av dessa ämnen är kända för att ha en långsiktig effekt på människor och bränder kan utgöra en signifikant utsläppskälla av sådana ämnen till miljön.



Det har länge varit känt att sammansättningen av en brands utsläpp är viktig för brandens konsekvenser, men detaljerad kunskap saknas i många fall. Speciellt saknas detaljerade kemiska mätningar från storskaliga brandförsök för att bekräfta den kunskap man hittills oftast baserat på information från småskaliga försök.



Arbetet som presenteras i avhandlingen bygger till största delen på resultaten från ett antal unika serier av storskaliga brandförsök. I dessa försök har brandutsläppen karakteriserats i detalj. Analyserna har inkluderat ett stort antal ämnesgrupper. Här ingår t.ex.: narkotiska gaser som CO och HCN, irriterande ämnen som HF, HCl och isocyanater, samt cancerogena ämnen som bensen, PAH och dioxiner. Förutom den kemiska karakteriseringen har även partikelfasen i rökgaserna karakteriserats i ett flertal försök.



Information om produktionen av toxiska gaser, som t.ex. HCN, är viktig för att kunna bedöma tillgänglig tid för utrymning vid bränder i byggnader. Kvantitativ information om produktionen av HCN, samt andra relevanta toxiska gaser, har tagits fram vid brandförsök med fullstora produkter och andra storskaliga försök. En applikation av en FED (Fractional Effective Dose) modell för narkotiska gaser visade att dessa gaser utgjorde den största faran vid en serie av tunnelförsök. Effekten från HCN visade sig vara viktig vid dessa försök.



Vidare utvärderades en reaktionskinetikmodell för gasfasreaktioner m.a.p. beräkning av HCN-produktion vid brand. Reaktionsmodellen ingick i CFD (Computational Fluid Dynamics) beräkningar. Resultaten från modellen visade sig tillfredställande vid en jämförelse mot uppmätta resultat från storskaliga rumsbränder.



Bränder ger utsläpp till miljön. De totala utsläppen av dioxiner, PAH samt VOC-ämnen från bränder i Sverige uppskattades för ett specifikt år. Uppskattningen gjordes genom att sammanställa mängden förbrukat material vid bränderna, tillsammans med approximerade emissionsfaktorer. En slutsats var att emissionerna av de undersökta ämnesgrupperna är stora från bränder. Brandrelaterade emissioner av PAH samt dioxiner påvisades vara signifikanta och jämförbara med emissionerna från andra källor. En ytterligare slutsats var att enskilda stora bränder kan leda till omfattande utsläpp av dioxiner. (Less)
Abstract
Accidental fires represent a risk for people from the heat and fire effluents produced. It is clear from fire statistics that it is, in fact, the toxic gases that kill and injure many fire victims. Further, there are a number of compounds that are readily produced in fires, which have important sublethal effects on humans. Some of those compounds are known to have a long-term effect on people, and fires might significantly contribute to the emission of such compounds to the environment.



Although, the importance of the quality of the fire effluents has been acknowledged for a long time in the fire science community, information on the detailed composition is to some degree missing. In particular, there has been a lack of... (More)
Accidental fires represent a risk for people from the heat and fire effluents produced. It is clear from fire statistics that it is, in fact, the toxic gases that kill and injure many fire victims. Further, there are a number of compounds that are readily produced in fires, which have important sublethal effects on humans. Some of those compounds are known to have a long-term effect on people, and fires might significantly contribute to the emission of such compounds to the environment.



Although, the importance of the quality of the fire effluents has been acknowledged for a long time in the fire science community, information on the detailed composition is to some degree missing. In particular, there has been a lack of real-scale fire experiments including detailed chemical analysis, to confirming the present knowledge-base, which in many cases relies on data from small-scale experiments.



The work presented in this thesis is largely based on the results of a number of unique series of large-scale fire experiments, where the composition of the fire effluents has been characterised in detail. The analyses have included many types of species, e.g.: narcotic fire gases such as CO and HCN, irritants such as HF, HCl and isocyanates, carcinogenic compounds such as benzene, PAHs and dioxins. The particulate phase of the fire effluents has also been characterised in a number of tests.



Information on the production of toxic gases, such as HCN, is important for estimating the time for evacuation in case of fires in buildings. Quantitative information on HCN, and other toxic gases relevant for an evacuation scenario, has been determined in real-scale fire experiments. An application of an FED model for asphyxiant gases, showed that these gases presented the greatest danger in a series of experimental tunnel fires, and that HCN, in particular, had a major impact in these fires.



Further, a chemical kinetic model included in a computational fluid dynamic (CFD) study, has been evaluated for the prediction of HCN production in fires. The prediction of the model was satisfactory compared to the results of large-scale enclosure tests.



An estimate of the total amounts of dioxin, PAH and VOC from fires in Sweden during a specific year was made, by combining the amounts of materials involved in fires with emission factors for these fires. It was concluded that the emissions of PAH, VOC and dioxins from fires are large. The fire related emissions of PAH and dioxins were further shown to be significant and comparable to those from many other sources. For dioxins it is further clear that large catastrophic fires can lead to major emissions. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Hovde, Per J., NTNU, Norway
organization
publishing date
type
Thesis
publication status
published
subject
keywords
kontroll av utsläpp, pollution control, Miljöteknik, Environmental technology, Byggnadsteknik, Building construction, incapacitation, CFD, simulations, emissions, particles, dioxin, PAH, gases, quantitative analysis, fire effluents, chemical characterisation, large-scale experiments
pages
318 pages
publisher
Department of Fire Safety Engineering and Systems Safety, Lund University
defense location
Room V:A, V-building, John Erikssons väg 1, Lund Institute of Technology
defense date
2005-10-21 14:15
external identifiers
  • other:ISRN:LUTVDG/TVBB-1030-SE
ISSN
1402-3504
ISBN
91-628-6638-9
language
English
LU publication?
yes
id
3250c7b9-abce-4814-b827-1b40aaf3440d (old id 545459)
date added to LUP
2007-09-06 13:03:01
date last changed
2016-09-19 08:44:57
@phdthesis{3250c7b9-abce-4814-b827-1b40aaf3440d,
  abstract     = {Accidental fires represent a risk for people from the heat and fire effluents produced. It is clear from fire statistics that it is, in fact, the toxic gases that kill and injure many fire victims. Further, there are a number of compounds that are readily produced in fires, which have important sublethal effects on humans. Some of those compounds are known to have a long-term effect on people, and fires might significantly contribute to the emission of such compounds to the environment.<br/><br>
<br/><br>
Although, the importance of the quality of the fire effluents has been acknowledged for a long time in the fire science community, information on the detailed composition is to some degree missing. In particular, there has been a lack of real-scale fire experiments including detailed chemical analysis, to confirming the present knowledge-base, which in many cases relies on data from small-scale experiments.<br/><br>
<br/><br>
The work presented in this thesis is largely based on the results of a number of unique series of large-scale fire experiments, where the composition of the fire effluents has been characterised in detail. The analyses have included many types of species, e.g.: narcotic fire gases such as CO and HCN, irritants such as HF, HCl and isocyanates, carcinogenic compounds such as benzene, PAHs and dioxins. The particulate phase of the fire effluents has also been characterised in a number of tests.<br/><br>
<br/><br>
Information on the production of toxic gases, such as HCN, is important for estimating the time for evacuation in case of fires in buildings. Quantitative information on HCN, and other toxic gases relevant for an evacuation scenario, has been determined in real-scale fire experiments. An application of an FED model for asphyxiant gases, showed that these gases presented the greatest danger in a series of experimental tunnel fires, and that HCN, in particular, had a major impact in these fires.<br/><br>
<br/><br>
Further, a chemical kinetic model included in a computational fluid dynamic (CFD) study, has been evaluated for the prediction of HCN production in fires. The prediction of the model was satisfactory compared to the results of large-scale enclosure tests.<br/><br>
<br/><br>
An estimate of the total amounts of dioxin, PAH and VOC from fires in Sweden during a specific year was made, by combining the amounts of materials involved in fires with emission factors for these fires. It was concluded that the emissions of PAH, VOC and dioxins from fires are large. The fire related emissions of PAH and dioxins were further shown to be significant and comparable to those from many other sources. For dioxins it is further clear that large catastrophic fires can lead to major emissions.},
  author       = {Blomqvist, Per},
  isbn         = {91-628-6638-9},
  issn         = {1402-3504},
  keyword      = {kontroll av utsläpp,pollution control,Miljöteknik,Environmental technology,Byggnadsteknik,Building construction,incapacitation,CFD,simulations,emissions,particles,dioxin,PAH,gases,quantitative analysis,fire effluents,chemical characterisation,large-scale experiments},
  language     = {eng},
  pages        = {318},
  publisher    = {Department of Fire Safety Engineering and Systems Safety, Lund University},
  school       = {Lund University},
  title        = {Emissions from Fires Consequences for Human Safety and the Environment},
  year         = {2005},
}