A parameter ASIP for the quadratic family
(2024) In Ergodic Theory and Dynamical Systems- Abstract
Consider the quadratic family Ta(x) = ax(1-x) for x ∈ [0, 1] and mixing Collet-Eckmann (CE) parameters a ∈ (2, 4). For bounded φ, set φ˜a := φ-∫ φ dμa, with μa the unique acim of Ta, and put (σa(φ))2 := ∫ φ˜2a dμa + 2Σ i>0 ∫ phi;˜a(φ˜a o T1a) dμa. For any mixing Misiurewicz parameter a∗, we find a positive measure set Ω∗ of mixing CE parameters, containing a∗ as a Lebesgue density point, such that for any Hölder φ with σa∗ (φ) ≠ 0, there exists ϵφ > 0 such that, for normalized Lebesgue measure on Ω∗ ∩ [a∗-ϵφ, a∗ + ϵφ], the functions ξi(a) = φ˜a(T i+1 a (1/2))/σa(φ) satisfy an almost sure invariance principle (ASIP) for any error exponent γ > 2/5. (In particular, the Birkhoff sums satisfy this ASIP.) Our argument goes along the... (More)
Consider the quadratic family Ta(x) = ax(1-x) for x ∈ [0, 1] and mixing Collet-Eckmann (CE) parameters a ∈ (2, 4). For bounded φ, set φ˜a := φ-∫ φ dμa, with μa the unique acim of Ta, and put (σa(φ))2 := ∫ φ˜2a dμa + 2Σ i>0 ∫ phi;˜a(φ˜a o T1a) dμa. For any mixing Misiurewicz parameter a∗, we find a positive measure set Ω∗ of mixing CE parameters, containing a∗ as a Lebesgue density point, such that for any Hölder φ with σa∗ (φ) ≠ 0, there exists ϵφ > 0 such that, for normalized Lebesgue measure on Ω∗ ∩ [a∗-ϵφ, a∗ + ϵφ], the functions ξi(a) = φ˜a(T i+1 a (1/2))/σa(φ) satisfy an almost sure invariance principle (ASIP) for any error exponent γ > 2/5. (In particular, the Birkhoff sums satisfy this ASIP.) Our argument goes along the lines of Schnellmann's proof for piecewise expanding maps. We need to introduce a variant of Benedicks-Carleson parameter exclusion and to exploit fractional response and uniform exponential decay of correlations from Baladi et al [Whitney-Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math. 201 (2015), 773-844].
(Less)
- author
- Aspenberg, Magnus
LU
; Baladi, Viviane
LU
and Persson, T. O.M.A.S.
LU
- organization
- publishing date
- 2024
- type
- Contribution to journal
- publication status
- epub
- subject
- keywords
- almost sure invariance principle, central limit theorem, the quadratic family
- in
- Ergodic Theory and Dynamical Systems
- publisher
- Cambridge University Press
- external identifiers
-
- scopus:85205285787
- ISSN
- 0143-3857
- DOI
- 10.1017/etds.2024.67
- language
- English
- LU publication?
- yes
- id
- 577f58f1-ac33-4f37-aeea-3042105d7cd7
- date added to LUP
- 2024-12-20 09:59:26
- date last changed
- 2025-04-04 15:17:13
@article{577f58f1-ac33-4f37-aeea-3042105d7cd7, abstract = {{<p>Consider the quadratic family Ta(x) = ax(1-x) for x ∈ [0, 1] and mixing Collet-Eckmann (CE) parameters a ∈ (2, 4). For bounded φ, set φ˜a := φ-∫ φ dμa, with μa the unique acim of Ta, and put (σa(φ))2 := ∫ φ˜2a dμa + 2Σ i>0 ∫ phi;˜a(φ˜a o T1a) dμa. For any mixing Misiurewicz parameter a∗, we find a positive measure set Ω∗ of mixing CE parameters, containing a∗ as a Lebesgue density point, such that for any Hölder φ with σa∗ (φ) ≠ 0, there exists ϵφ > 0 such that, for normalized Lebesgue measure on Ω∗ ∩ [a∗-ϵφ, a∗ + ϵφ], the functions ξi(a) = φ˜a(T i+1 a (1/2))/σa(φ) satisfy an almost sure invariance principle (ASIP) for any error exponent γ > 2/5. (In particular, the Birkhoff sums satisfy this ASIP.) Our argument goes along the lines of Schnellmann's proof for piecewise expanding maps. We need to introduce a variant of Benedicks-Carleson parameter exclusion and to exploit fractional response and uniform exponential decay of correlations from Baladi et al [Whitney-Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math. 201 (2015), 773-844].</p>}}, author = {{Aspenberg, Magnus and Baladi, Viviane and Persson, T. O.M.A.S.}}, issn = {{0143-3857}}, keywords = {{almost sure invariance principle; central limit theorem; the quadratic family}}, language = {{eng}}, publisher = {{Cambridge University Press}}, series = {{Ergodic Theory and Dynamical Systems}}, title = {{A parameter ASIP for the quadratic family}}, url = {{http://dx.doi.org/10.1017/etds.2024.67}}, doi = {{10.1017/etds.2024.67}}, year = {{2024}}, }