Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Optimization of the visibility of a tunable dual-phase x-ray grating interferometer

Organista, Caori ; Kagias, Matias LU ; Tang, Ruizhi ; Shi, Zhitian ; Jefimovs, Konstantins ; Boone, Matthieu N. and Stampanoni, Marco (2023) In OSA Continuum 2(1). p.232-248
Abstract

Dual-phase x-ray grating interferometry (DP-XGI) is a recently developed imaging technique that can retrieve structural information in the sub-micro scale over areas in the millimeter range. This is performed by use of the scattering signal, which is sensitive to structures that lie below the intrinsic spatial resolution of the imaging system. A quantitative understanding of the microstructure is possible when the scattering signal is retrieved within a range of auto-correlation lengths of the features of interest. High visibility of fringes in this length range is desirable, but no straightforward framework exists for choosing design parameters of the imaging system for such optimization. The purpose of this work is to present an... (More)

Dual-phase x-ray grating interferometry (DP-XGI) is a recently developed imaging technique that can retrieve structural information in the sub-micro scale over areas in the millimeter range. This is performed by use of the scattering signal, which is sensitive to structures that lie below the intrinsic spatial resolution of the imaging system. A quantitative understanding of the microstructure is possible when the scattering signal is retrieved within a range of auto-correlation lengths of the features of interest. High visibility of fringes in this length range is desirable, but no straightforward framework exists for choosing design parameters of the imaging system for such optimization. The purpose of this work is to present an optimization protocol for DP-XGI based on a Fresnel propagation simulation framework which evaluates different parameters of the optical system, utilizing the mean visibility of the fringes at the detector plane as a figure of merit to optimize the DP-XGI for a conventional lab x-ray source. The performance of the numerical simulation with realistic component parameters is validated with the experimental results obtained at a lab-based setup. The results of the validation confirm the robustness of the model for the evaluation of the different components of the interferometer and its optimization at low and high energies.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
subject
in
OSA Continuum
volume
2
issue
1
pages
17 pages
publisher
Optical Society of America
external identifiers
  • scopus:85167864109
ISSN
2578-7519
DOI
10.1364/OPTCON.478294
language
English
LU publication?
no
additional info
Publisher Copyright: © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
id
5aa846fa-43d0-48cd-bae9-064652c44098
date added to LUP
2023-11-27 08:54:16
date last changed
2023-12-04 11:54:01
@article{5aa846fa-43d0-48cd-bae9-064652c44098,
  abstract     = {{<p>Dual-phase x-ray grating interferometry (DP-XGI) is a recently developed imaging technique that can retrieve structural information in the sub-micro scale over areas in the millimeter range. This is performed by use of the scattering signal, which is sensitive to structures that lie below the intrinsic spatial resolution of the imaging system. A quantitative understanding of the microstructure is possible when the scattering signal is retrieved within a range of auto-correlation lengths of the features of interest. High visibility of fringes in this length range is desirable, but no straightforward framework exists for choosing design parameters of the imaging system for such optimization. The purpose of this work is to present an optimization protocol for DP-XGI based on a Fresnel propagation simulation framework which evaluates different parameters of the optical system, utilizing the mean visibility of the fringes at the detector plane as a figure of merit to optimize the DP-XGI for a conventional lab x-ray source. The performance of the numerical simulation with realistic component parameters is validated with the experimental results obtained at a lab-based setup. The results of the validation confirm the robustness of the model for the evaluation of the different components of the interferometer and its optimization at low and high energies.</p>}},
  author       = {{Organista, Caori and Kagias, Matias and Tang, Ruizhi and Shi, Zhitian and Jefimovs, Konstantins and Boone, Matthieu N. and Stampanoni, Marco}},
  issn         = {{2578-7519}},
  language     = {{eng}},
  month        = {{01}},
  number       = {{1}},
  pages        = {{232--248}},
  publisher    = {{Optical Society of America}},
  series       = {{OSA Continuum}},
  title        = {{Optimization of the visibility of a tunable dual-phase x-ray grating interferometer}},
  url          = {{http://dx.doi.org/10.1364/OPTCON.478294}},
  doi          = {{10.1364/OPTCON.478294}},
  volume       = {{2}},
  year         = {{2023}},
}