Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Numerical simulation of solid oxide fuel cells comparing different electrochemical kinetics

Zhang, Xiaoqiang LU ; Wang, Lei LU ; Espinoza, Mayken ; Li, Tingshuai and Andersson, Martin LU (2021) In International Journal of Energy Research 45(9). p.12980-12995
Abstract

Solid oxide fuel cells (SOFCs) produce electricity with high electrical efficiency and fuel flexibility without pollution, for example, CO2, NOx, SOx, and particles. Still, numerous issues hindered the large-scale commercialization of fuel cell at a large scale, such as fuel storage, mechanical failure, catalytic degradation, electrode poisoning from fuel and air, for example, lifetime in relation to cost. Computational fluid dynamics (CFD) couples various physical fields, which is vital to reduce the redundant workload required for SOFC development. Modeling of SOFCs includes the coupling of charge transfer, electrochemical reactions, fluid flow, energy transport, and species transport. The... (More)

Solid oxide fuel cells (SOFCs) produce electricity with high electrical efficiency and fuel flexibility without pollution, for example, CO2, NOx, SOx, and particles. Still, numerous issues hindered the large-scale commercialization of fuel cell at a large scale, such as fuel storage, mechanical failure, catalytic degradation, electrode poisoning from fuel and air, for example, lifetime in relation to cost. Computational fluid dynamics (CFD) couples various physical fields, which is vital to reduce the redundant workload required for SOFC development. Modeling of SOFCs includes the coupling of charge transfer, electrochemical reactions, fluid flow, energy transport, and species transport. The Butler-Volmer equation is frequently used to describe the coupling of electrochemical reactions with current density. The most frequently used is the activation- and diffusion-controlled Butler-Volmer equation. Three different electrode reaction models are examined in the study, which is named case 1, case 2, and case 3, respectively. Case 1 is activation controlled while cases 2 and 3 are diffusion-controlled which take the concentration of redox species into account. It is shown that case 1 gives the highest reaction rate, followed by case 2 and case 3. Case 3 gives the lowest reaction rate and thus has a much lower current density and temperature. The change of activation overpotential does not follow the change of current density and temperature at the interface of the anode and electrolyte and interface of cathode and electrolyte, which demonstrates the non-linearity of the model. This study provides a reference to build electrochemical models of SOFCs and gives a deep understanding of the involved electrochemistry.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Butler-Volmer equation, CFD, current density, electrochemical kinetics, overpotential, SOFC
in
International Journal of Energy Research
volume
45
issue
9
pages
16 pages
publisher
John Wiley & Sons Inc.
external identifiers
  • scopus:85102453948
ISSN
0363-907X
DOI
10.1002/er.6628
language
English
LU publication?
yes
id
5b7e039d-c0fc-4f58-bf77-e27ad835997b
date added to LUP
2021-03-22 08:47:26
date last changed
2023-04-11 08:17:44
@article{5b7e039d-c0fc-4f58-bf77-e27ad835997b,
  abstract     = {{<p>Solid oxide fuel cells (SOFCs) produce electricity with high electrical efficiency and fuel flexibility without pollution, for example, CO<sub>2</sub>, NO<sub>x</sub>, SO<sub>x,</sub> and particles. Still, numerous issues hindered the large-scale commercialization of fuel cell at a large scale, such as fuel storage, mechanical failure, catalytic degradation, electrode poisoning from fuel and air, for example, lifetime in relation to cost. Computational fluid dynamics (CFD) couples various physical fields, which is vital to reduce the redundant workload required for SOFC development. Modeling of SOFCs includes the coupling of charge transfer, electrochemical reactions, fluid flow, energy transport, and species transport. The Butler-Volmer equation is frequently used to describe the coupling of electrochemical reactions with current density. The most frequently used is the activation- and diffusion-controlled Butler-Volmer equation. Three different electrode reaction models are examined in the study, which is named case 1, case 2, and case 3, respectively. Case 1 is activation controlled while cases 2 and 3 are diffusion-controlled which take the concentration of redox species into account. It is shown that case 1 gives the highest reaction rate, followed by case 2 and case 3. Case 3 gives the lowest reaction rate and thus has a much lower current density and temperature. The change of activation overpotential does not follow the change of current density and temperature at the interface of the anode and electrolyte and interface of cathode and electrolyte, which demonstrates the non-linearity of the model. This study provides a reference to build electrochemical models of SOFCs and gives a deep understanding of the involved electrochemistry.</p>}},
  author       = {{Zhang, Xiaoqiang and Wang, Lei and Espinoza, Mayken and Li, Tingshuai and Andersson, Martin}},
  issn         = {{0363-907X}},
  keywords     = {{Butler-Volmer equation; CFD; current density; electrochemical kinetics; overpotential; SOFC}},
  language     = {{eng}},
  month        = {{07}},
  number       = {{9}},
  pages        = {{12980--12995}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{International Journal of Energy Research}},
  title        = {{Numerical simulation of solid oxide fuel cells comparing different electrochemical kinetics}},
  url          = {{http://dx.doi.org/10.1002/er.6628}},
  doi          = {{10.1002/er.6628}},
  volume       = {{45}},
  year         = {{2021}},
}