Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Resonantly Enhanced Optical Trapping of Single Dye-Doped Particles at an Interface

Bresolí-Obach, Roger ; Kudo, Tetsuhiro ; Louis, Boris LU ; Chang, Yu Chia ; Scheblykin, Ivan G. LU orcid ; Masuhara, Hiroshi and Hofkens, Johan (2021) In ACS Photonics 8(6). p.1832-1839
Abstract

The optical resonance between an absorbing particle and the trapping laser can enhance the radiation force exerted on micro/nanoscale objects. However, the exact mechanism behind this resonance is still elusive. To unravel the phenomenon, we studied the resonance between a single dye-doped polystyrene particle and a 1064 nm trapping laser under specifically designed optical conditions. The dye-doped particle was trapped at a water-glass interface while simultaneously being excited by a 488 nm widefield laser. In contrast with former reports (â 10-35% trapping stiffness enhancement), we obtained an unprecedented 4-fold trapping stiffness enhancement due to resonant excitation. When we photobleached the embedded dyes as a control, the... (More)

The optical resonance between an absorbing particle and the trapping laser can enhance the radiation force exerted on micro/nanoscale objects. However, the exact mechanism behind this resonance is still elusive. To unravel the phenomenon, we studied the resonance between a single dye-doped polystyrene particle and a 1064 nm trapping laser under specifically designed optical conditions. The dye-doped particle was trapped at a water-glass interface while simultaneously being excited by a 488 nm widefield laser. In contrast with former reports (â 10-35% trapping stiffness enhancement), we obtained an unprecedented 4-fold trapping stiffness enhancement due to resonant excitation. When we photobleached the embedded dyes as a control, the trapping stiffness enhancement was no longer observed. Based on nonlinear resonant radiation force theory and the experimental data obtained with a three-dimensional multiplane microscope, we propose that the widefield laser excites the dye to S1 and the trapping laser induces a simultaneous ultrafast S1-S2-S1 cyclic transition, resonantly enhancing the induced dye polarization and, consequently, the radiation force. The elucidation of the optical resonance effect is expected to ultimately enable single molecule manipulation in solution at room temperature.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
nonlinear optics, optical force, optical resonance effect, optical trapping, single particle trapping
in
ACS Photonics
volume
8
issue
6
pages
8 pages
publisher
The American Chemical Society (ACS)
external identifiers
  • scopus:85108402559
ISSN
2330-4022
DOI
10.1021/acsphotonics.1c00438
language
English
LU publication?
yes
id
5d86f3ae-4426-47e2-8be7-1b0a8e642e46
date added to LUP
2021-12-27 08:20:49
date last changed
2023-11-09 02:30:17
@article{5d86f3ae-4426-47e2-8be7-1b0a8e642e46,
  abstract     = {{<p>The optical resonance between an absorbing particle and the trapping laser can enhance the radiation force exerted on micro/nanoscale objects. However, the exact mechanism behind this resonance is still elusive. To unravel the phenomenon, we studied the resonance between a single dye-doped polystyrene particle and a 1064 nm trapping laser under specifically designed optical conditions. The dye-doped particle was trapped at a water-glass interface while simultaneously being excited by a 488 nm widefield laser. In contrast with former reports (â 10-35% trapping stiffness enhancement), we obtained an unprecedented 4-fold trapping stiffness enhancement due to resonant excitation. When we photobleached the embedded dyes as a control, the trapping stiffness enhancement was no longer observed. Based on nonlinear resonant radiation force theory and the experimental data obtained with a three-dimensional multiplane microscope, we propose that the widefield laser excites the dye to S1 and the trapping laser induces a simultaneous ultrafast S1-S2-S1 cyclic transition, resonantly enhancing the induced dye polarization and, consequently, the radiation force. The elucidation of the optical resonance effect is expected to ultimately enable single molecule manipulation in solution at room temperature. </p>}},
  author       = {{Bresolí-Obach, Roger and Kudo, Tetsuhiro and Louis, Boris and Chang, Yu Chia and Scheblykin, Ivan G. and Masuhara, Hiroshi and Hofkens, Johan}},
  issn         = {{2330-4022}},
  keywords     = {{nonlinear optics; optical force; optical resonance effect; optical trapping; single particle trapping}},
  language     = {{eng}},
  number       = {{6}},
  pages        = {{1832--1839}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{ACS Photonics}},
  title        = {{Resonantly Enhanced Optical Trapping of Single Dye-Doped Particles at an Interface}},
  url          = {{http://dx.doi.org/10.1021/acsphotonics.1c00438}},
  doi          = {{10.1021/acsphotonics.1c00438}},
  volume       = {{8}},
  year         = {{2021}},
}