Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Optimization Of The Blade Profile And Cooling Structure In A Gas Turbine Stage Considering Both The Aerodynamics And Heat Transfer

Lei, Luo LU ; Sundén, Bengt LU and Wang, Songtao (2015) In Heat Transfer Research 46(7). p.599-629
Abstract
The need to design high performance of a cooled gas turbine is considered with emphasis made on coupled aerodynamic and heat transfer optimization of the vane, blade, and single stage cooled gas turbine by using a multiobjective optimization method. The aerodynamic profile is designed to have three sections and the cooling structure to consist of a serpentine passage, with a tail transverse channel and trailing edge slots. The optimization platform is built up in an in-house code using a cooling structure parametric method based on MATLAB, as well as automatic grid generation methods, a blade profile parametric program in FORTRAN, the soft ware ISIGHT and ANSYS-CFX. The optimization platform evaluates the aerodynamic effects through the... (More)
The need to design high performance of a cooled gas turbine is considered with emphasis made on coupled aerodynamic and heat transfer optimization of the vane, blade, and single stage cooled gas turbine by using a multiobjective optimization method. The aerodynamic profile is designed to have three sections and the cooling structure to consist of a serpentine passage, with a tail transverse channel and trailing edge slots. The optimization platform is built up in an in-house code using a cooling structure parametric method based on MATLAB, as well as automatic grid generation methods, a blade profile parametric program in FORTRAN, the soft ware ISIGHT and ANSYS-CFX. The optimization platform evaluates the aerodynamic effects through the aerodynamic efficiency and presents the cooling effect by the high-temperature coefficient. The pressure drop is described by a pressure drop function. The multiobjective optimization method is accomplished by optimizing the inlet flow angle, installation angle, and the post-corner angle of the vane and blade profiles, while the position of partition is the optimized variable of the cooling structure. The results show that there exists an optimum case in aerodynamic efficiency, high-temperature coefficient, and pressure drop in a Pareto-optimal front. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
heat transfer, aerodynamic, gas turbine, multiobjective optimization, Pareto-optimal front
in
Heat Transfer Research
volume
46
issue
7
pages
599 - 629
publisher
Begell House
external identifiers
  • wos:000359114600001
  • scopus:84936768906
ISSN
1064-2285
DOI
10.1615/HeatTransRes.2015012370
language
English
LU publication?
yes
id
60108c6b-d81a-4c50-92b2-1e80fb853bf0 (old id 7985049)
date added to LUP
2016-04-01 10:24:18
date last changed
2022-04-04 17:45:44
@article{60108c6b-d81a-4c50-92b2-1e80fb853bf0,
  abstract     = {{The need to design high performance of a cooled gas turbine is considered with emphasis made on coupled aerodynamic and heat transfer optimization of the vane, blade, and single stage cooled gas turbine by using a multiobjective optimization method. The aerodynamic profile is designed to have three sections and the cooling structure to consist of a serpentine passage, with a tail transverse channel and trailing edge slots. The optimization platform is built up in an in-house code using a cooling structure parametric method based on MATLAB, as well as automatic grid generation methods, a blade profile parametric program in FORTRAN, the soft ware ISIGHT and ANSYS-CFX. The optimization platform evaluates the aerodynamic effects through the aerodynamic efficiency and presents the cooling effect by the high-temperature coefficient. The pressure drop is described by a pressure drop function. The multiobjective optimization method is accomplished by optimizing the inlet flow angle, installation angle, and the post-corner angle of the vane and blade profiles, while the position of partition is the optimized variable of the cooling structure. The results show that there exists an optimum case in aerodynamic efficiency, high-temperature coefficient, and pressure drop in a Pareto-optimal front.}},
  author       = {{Lei, Luo and Sundén, Bengt and Wang, Songtao}},
  issn         = {{1064-2285}},
  keywords     = {{heat transfer; aerodynamic; gas turbine; multiobjective optimization; Pareto-optimal front}},
  language     = {{eng}},
  number       = {{7}},
  pages        = {{599--629}},
  publisher    = {{Begell House}},
  series       = {{Heat Transfer Research}},
  title        = {{Optimization Of The Blade Profile And Cooling Structure In A Gas Turbine Stage Considering Both The Aerodynamics And Heat Transfer}},
  url          = {{http://dx.doi.org/10.1615/HeatTransRes.2015012370}},
  doi          = {{10.1615/HeatTransRes.2015012370}},
  volume       = {{46}},
  year         = {{2015}},
}