Advanced

Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing

Skjoth, Carsten LU ; Orby, P. V. ; Becker, T. ; Geels, C. ; Schlunssen, V. ; Sigsgaard, T. ; Bonlokke, J. H. ; Sommer, J. ; Sogaard, P. and Hertel, O. (2013) In Biogeosciences 10(1). p.541-554
Abstract
We examine here the hypothesis that during flowering, the grass pollen concentrations at a specific site reflect the distribution of grass pollen sources within a few kilometres of this site. We perform this analysis on data from a measurement campaign in the city of Aarhus (Denmark) using three pollen traps and by comparing these observations with a novel inventory of grass pollen sources. The source inventory is based on a new methodology developed for urban-scale grass pollen sources. The new methodology is believed to be generally applicable for the European area, as it relies on commonly available remote sensing data combined with management information for local grass areas. The inventory has identified a number of grass pollen... (More)
We examine here the hypothesis that during flowering, the grass pollen concentrations at a specific site reflect the distribution of grass pollen sources within a few kilometres of this site. We perform this analysis on data from a measurement campaign in the city of Aarhus (Denmark) using three pollen traps and by comparing these observations with a novel inventory of grass pollen sources. The source inventory is based on a new methodology developed for urban-scale grass pollen sources. The new methodology is believed to be generally applicable for the European area, as it relies on commonly available remote sensing data combined with management information for local grass areas. The inventory has identified a number of grass pollen source areas present within the city domain. The comparison of the measured pollen concentrations with the inventory shows that the atmospheric concentrations of grass pollen in the urban zone reflect the source areas identified in the inventory, and that the pollen sources that are found to affect the pollen levels are located near or within the city domain. The results also show that during days with peak levels of pollen concentrations there is no correlation between the three urban traps and an operational trap located just 60 km away. This finding suggests that during intense flowering, the grass pollen concentration mirrors the local source distribution and is thus a local-scale phenomenon. Model simulations aimed at assessing population exposure to pollen levels are therefore recommended to take into account both local sources and local atmospheric transport, and not to rely only on describing regional to long-range transport of pollen. The derived pollen source inventory can be entered into local-scale atmospheric transport models in combination with other components that simulate pollen release in order to calculate urban-scale variations in the grass pollen load. The gridded inventory with a resolution of 14m is therefore made available as supplementary material to this paper, and the verifying grass pollen observations are additionally available in tabular form. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Biogeosciences
volume
10
issue
1
pages
541 - 554
publisher
Copernicus Publications
external identifiers
  • wos:000314173700035
ISSN
1726-4189
DOI
10.5194/bg-10-541-2013
language
English
LU publication?
yes
id
6162c3bd-c4f8-4eb0-afb6-ca61c38fac9d (old id 3590781)
date added to LUP
2016-04-01 10:15:13
date last changed
2019-11-25 09:04:58
@article{6162c3bd-c4f8-4eb0-afb6-ca61c38fac9d,
  abstract     = {We examine here the hypothesis that during flowering, the grass pollen concentrations at a specific site reflect the distribution of grass pollen sources within a few kilometres of this site. We perform this analysis on data from a measurement campaign in the city of Aarhus (Denmark) using three pollen traps and by comparing these observations with a novel inventory of grass pollen sources. The source inventory is based on a new methodology developed for urban-scale grass pollen sources. The new methodology is believed to be generally applicable for the European area, as it relies on commonly available remote sensing data combined with management information for local grass areas. The inventory has identified a number of grass pollen source areas present within the city domain. The comparison of the measured pollen concentrations with the inventory shows that the atmospheric concentrations of grass pollen in the urban zone reflect the source areas identified in the inventory, and that the pollen sources that are found to affect the pollen levels are located near or within the city domain. The results also show that during days with peak levels of pollen concentrations there is no correlation between the three urban traps and an operational trap located just 60 km away. This finding suggests that during intense flowering, the grass pollen concentration mirrors the local source distribution and is thus a local-scale phenomenon. Model simulations aimed at assessing population exposure to pollen levels are therefore recommended to take into account both local sources and local atmospheric transport, and not to rely only on describing regional to long-range transport of pollen. The derived pollen source inventory can be entered into local-scale atmospheric transport models in combination with other components that simulate pollen release in order to calculate urban-scale variations in the grass pollen load. The gridded inventory with a resolution of 14m is therefore made available as supplementary material to this paper, and the verifying grass pollen observations are additionally available in tabular form.},
  author       = {Skjoth, Carsten and Orby, P. V. and Becker, T. and Geels, C. and Schlunssen, V. and Sigsgaard, T. and Bonlokke, J. H. and Sommer, J. and Sogaard, P. and Hertel, O.},
  issn         = {1726-4189},
  language     = {eng},
  number       = {1},
  pages        = {541--554},
  publisher    = {Copernicus Publications},
  series       = {Biogeosciences},
  title        = {Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing},
  url          = {http://dx.doi.org/10.5194/bg-10-541-2013},
  doi          = {10.5194/bg-10-541-2013},
  volume       = {10},
  year         = {2013},
}