Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The dragon simulations: globular cluster evolution with a million stars

Wang, Long ; Spurzem, Rainer ; Aarseth, Sverre ; Giersz, Mirek ; Askar, Abbas LU orcid ; Berczik, Peter ; Naab, Thorsten ; Schadow, Riko and Kouwenhoven, M. B. N. (2016) In Monthly Notices of the Royal Astronomical Society 458(2). p.1450-1465
Abstract
Introducing the dragon simulation project, we present direct N-body simulations of four massive globular clusters (GCs) with 106 stars and 5 per cent primordial binaries at a high level of accuracy and realism. The GC evolution is computed with nbody6++gpu and follows the dynamical and stellar evolution of individual stars and binaries, kicks of neutron stars and black holes (BHs), and the effect of a tidal field. We investigate the evolution of the luminous (stellar) and dark (faint stars and stellar remnants) GC components and create mock observations of the simulations (i.e. photometry, colour–magnitude diagrams, surface brightness and velocity dispersion profiles). By connecting internal processes to observable features, we highlight... (More)
Introducing the dragon simulation project, we present direct N-body simulations of four massive globular clusters (GCs) with 106 stars and 5 per cent primordial binaries at a high level of accuracy and realism. The GC evolution is computed with nbody6++gpu and follows the dynamical and stellar evolution of individual stars and binaries, kicks of neutron stars and black holes (BHs), and the effect of a tidal field. We investigate the evolution of the luminous (stellar) and dark (faint stars and stellar remnants) GC components and create mock observations of the simulations (i.e. photometry, colour–magnitude diagrams, surface brightness and velocity dispersion profiles). By connecting internal processes to observable features, we highlight the formation of a long-lived ‘dark’ nuclear subsystem made of BHs, which results in a two-component structure. The inner core is dominated by the BH subsystem and experiences a core-collapse phase within the first Gyr. It can be detected in the stellar (luminous) line-of-sight velocity dispersion profiles. The outer extended core – commonly observed in the (luminous) surface brightness profiles – shows no collapse features and is continuously expanding. We demonstrate how a King model fit to observed clusters might help identify the presence of post core-collapse BH subsystems. For global observables like core and half-mass radii, the direct simulations agree well with Monte Carlo models. Variations in the initial mass function can result in significantly different GC properties (e.g. density distributions) driven by varying amounts of early mass-loss and the number of forming BHs. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
subject
in
Monthly Notices of the Royal Astronomical Society
volume
458
issue
2
pages
16 pages
publisher
Oxford University Press
external identifiers
  • scopus:84963837846
ISSN
1365-2966
DOI
10.1093/mnras/stw274
language
English
LU publication?
no
id
62b610de-2dc4-40e7-aeaf-755c2550f168
date added to LUP
2018-10-30 18:00:58
date last changed
2022-04-10 03:02:53
@article{62b610de-2dc4-40e7-aeaf-755c2550f168,
  abstract     = {{Introducing the dragon simulation project, we present direct N-body simulations of four massive globular clusters (GCs) with 106 stars and 5 per cent primordial binaries at a high level of accuracy and realism. The GC evolution is computed with nbody6++gpu and follows the dynamical and stellar evolution of individual stars and binaries, kicks of neutron stars and black holes (BHs), and the effect of a tidal field. We investigate the evolution of the luminous (stellar) and dark (faint stars and stellar remnants) GC components and create mock observations of the simulations (i.e. photometry, colour–magnitude diagrams, surface brightness and velocity dispersion profiles). By connecting internal processes to observable features, we highlight the formation of a long-lived ‘dark’ nuclear subsystem made of BHs, which results in a two-component structure. The inner core is dominated by the BH subsystem and experiences a core-collapse phase within the first Gyr. It can be detected in the stellar (luminous) line-of-sight velocity dispersion profiles. The outer extended core – commonly observed in the (luminous) surface brightness profiles – shows no collapse features and is continuously expanding. We demonstrate how a King model fit to observed clusters might help identify the presence of post core-collapse BH subsystems. For global observables like core and half-mass radii, the direct simulations agree well with Monte Carlo models. Variations in the initial mass function can result in significantly different GC properties (e.g. density distributions) driven by varying amounts of early mass-loss and the number of forming BHs.}},
  author       = {{Wang, Long and Spurzem, Rainer and Aarseth, Sverre and Giersz, Mirek and Askar, Abbas and Berczik, Peter and Naab, Thorsten and Schadow, Riko and Kouwenhoven, M. B. N.}},
  issn         = {{1365-2966}},
  language     = {{eng}},
  month        = {{03}},
  number       = {{2}},
  pages        = {{1450--1465}},
  publisher    = {{Oxford University Press}},
  series       = {{Monthly Notices of the Royal Astronomical Society}},
  title        = {{The dragon simulations: globular cluster evolution with a million stars}},
  url          = {{http://dx.doi.org/10.1093/mnras/stw274}},
  doi          = {{10.1093/mnras/stw274}},
  volume       = {{458}},
  year         = {{2016}},
}