Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Effect of additives on swelling of covalent DNA gels

Costa, Diana LU ; Miguel, Maria LU and Lindman, Björn LU (2007) In The Journal of Physical Chemistry Part B 111(29). p.8444-8452
Abstract
The volumetric response of polymer gels on cosolute addition depends on the interaction of the polymer with the cosolute and can be used as a simple and sensitive way of elucidating these interactions. Here we report on DNA networks, prepared by crosslinking double-stranded DNA with ethylene glycol diglycidyl ether (EGDE); these have been investigated with respect to their swelling in aqueous solution containing different additives, such as metal ions, polyamines, charged proteins, and surfactants. The deswelling on addition of metal ions occurs at lower concentrations with increasing valency of the counterion. The collapse of the gels in the presence of trivalent ions seems to follow the same kind of mechanism as the interaction in... (More)
The volumetric response of polymer gels on cosolute addition depends on the interaction of the polymer with the cosolute and can be used as a simple and sensitive way of elucidating these interactions. Here we report on DNA networks, prepared by crosslinking double-stranded DNA with ethylene glycol diglycidyl ether (EGDE); these have been investigated with respect to their swelling in aqueous solution containing different additives, such as metal ions, polyamines, charged proteins, and surfactants. The deswelling on addition of metal ions occurs at lower concentrations with increasing valency of the counterion. The collapse of the gels in the presence of trivalent ions seems to follow the same kind of mechanism as the interaction in solution, but addition of these ions leads to DNA denaturation and formation of single-stranded DNA. Striking features were found in the deswelling of DNA gels by chitosan, spermine, spermidine, lysozyme, poly-L-lysine and poly-L-arginine. Chitosan is the most efficient cosolute of those investigated with respect to DNA gel collapse. The effect of the cationic surfactant tail length on the volume phase transition of DNA gels was studied as a function of surfactant concentration. Cationic surfactants effectively collapsed the gel from the critical aggregation concentration (cac), decreasing with increasing length of the hydrophobic tail. In several cases, the deswelling as a function of cosolute concentration shows a pronounced two-step behavior, which is interpreted in terms of a combination of DNA chain condensation and general osmotic deswelling. The studies included investigations on the state of the DNA chain after deswelling, on the reversibility of the deswelling as well as on the kinetics. With the exception for the trivalent lanthanide ions, it appears that the DNA chain always retains a double-helix conformation; with these metal ions, single-stranded DNA is found. The deswelling appears to be reversible as exemplified by addition of anionic surfactant subsequent to gel collapsed by cationic surfactant and addition of sodium bromide to gels collapsed by a polycation. An investigation of the kinetics shows that an increase in the surfactant tail length gives a pronouncedly slower deswelling kinetics. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
The Journal of Physical Chemistry Part B
volume
111
issue
29
pages
8444 - 8452
publisher
The American Chemical Society (ACS)
external identifiers
  • wos:000248121500016
  • scopus:34547679846
  • pmid:17489624
ISSN
1520-5207
DOI
10.1021/jp067917q
language
English
LU publication?
yes
id
87093cee-af28-4770-bc95-409bdea092a9 (old id 646368)
date added to LUP
2016-04-01 16:50:41
date last changed
2022-04-07 19:00:00
@article{87093cee-af28-4770-bc95-409bdea092a9,
  abstract     = {{The volumetric response of polymer gels on cosolute addition depends on the interaction of the polymer with the cosolute and can be used as a simple and sensitive way of elucidating these interactions. Here we report on DNA networks, prepared by crosslinking double-stranded DNA with ethylene glycol diglycidyl ether (EGDE); these have been investigated with respect to their swelling in aqueous solution containing different additives, such as metal ions, polyamines, charged proteins, and surfactants. The deswelling on addition of metal ions occurs at lower concentrations with increasing valency of the counterion. The collapse of the gels in the presence of trivalent ions seems to follow the same kind of mechanism as the interaction in solution, but addition of these ions leads to DNA denaturation and formation of single-stranded DNA. Striking features were found in the deswelling of DNA gels by chitosan, spermine, spermidine, lysozyme, poly-L-lysine and poly-L-arginine. Chitosan is the most efficient cosolute of those investigated with respect to DNA gel collapse. The effect of the cationic surfactant tail length on the volume phase transition of DNA gels was studied as a function of surfactant concentration. Cationic surfactants effectively collapsed the gel from the critical aggregation concentration (cac), decreasing with increasing length of the hydrophobic tail. In several cases, the deswelling as a function of cosolute concentration shows a pronounced two-step behavior, which is interpreted in terms of a combination of DNA chain condensation and general osmotic deswelling. The studies included investigations on the state of the DNA chain after deswelling, on the reversibility of the deswelling as well as on the kinetics. With the exception for the trivalent lanthanide ions, it appears that the DNA chain always retains a double-helix conformation; with these metal ions, single-stranded DNA is found. The deswelling appears to be reversible as exemplified by addition of anionic surfactant subsequent to gel collapsed by cationic surfactant and addition of sodium bromide to gels collapsed by a polycation. An investigation of the kinetics shows that an increase in the surfactant tail length gives a pronouncedly slower deswelling kinetics.}},
  author       = {{Costa, Diana and Miguel, Maria and Lindman, Björn}},
  issn         = {{1520-5207}},
  language     = {{eng}},
  number       = {{29}},
  pages        = {{8444--8452}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{The Journal of Physical Chemistry Part B}},
  title        = {{Effect of additives on swelling of covalent DNA gels}},
  url          = {{http://dx.doi.org/10.1021/jp067917q}},
  doi          = {{10.1021/jp067917q}},
  volume       = {{111}},
  year         = {{2007}},
}