Manipulation of Nanoparticles for Quantum and Single-Electron Devices
(1999)- Abstract
- In this thesis a technique to manipulate nanoparticles with an atomic force microscope (AFM) is presented. Particles in the size range of 5-500 nm could be positioned in arbitrary two-dimensional patterns on different surfaces by mechanically pushing them with the AFM tip. The technique which is material-independent can be applied to any type of nanometer-sized particles or objects that are free to move on a surface. Results from semiconductor and metal aerosol particles, as well as metal discs defined by electron-beam lithography are presented.
The AFM manipulation technique is combined with in-situ electrical measurements of device properties for the fabrication of nanodevices based on conductance quantization and... (More) - In this thesis a technique to manipulate nanoparticles with an atomic force microscope (AFM) is presented. Particles in the size range of 5-500 nm could be positioned in arbitrary two-dimensional patterns on different surfaces by mechanically pushing them with the AFM tip. The technique which is material-independent can be applied to any type of nanometer-sized particles or objects that are free to move on a surface. Results from semiconductor and metal aerosol particles, as well as metal discs defined by electron-beam lithography are presented.
The AFM manipulation technique is combined with in-situ electrical measurements of device properties for the fabrication of nanodevices based on conductance quantization and single-electron charging effects. By moving gold nanoparticles into contact with gold electrodes separated by a small gap, atomic-scale contacts were fabricated, which exhibited quantized conductance steps and could be tuned to predefined quantized conductance values. In addition, two different techniques to build single-electron devices are presented: (i) The mechanical tuning of tunnel gaps with gold or palladium discs and (ii) by using oxidized indium aerosol particles as the central island. In the first technique gaps, only a couple of Å wide could be produced, with potential applications not only as tunnel junctions but also for the investigation of single molecules. Single and double-island single-electron transistors (SETs) were fabricated, with gate oscillations being observed at temperatures up to 25 K. (Less) - Abstract (Swedish)
- Popular Abstract in Swedish
I ett atomkraftsmikroskop avbildar man ytor och föremål genom att känna av ojämnheter med hjälp av en vass spets. Spetsen har en diameter på ca en tusendel av ett hårstrå. I avhandlingen beskrivs en teknik för hur man med denna extremt vassa spets kan manipulera nanometerstora metall- och halvledar partiklar mellan elektroder på en yta för att bygga elektriska komponenter. Genom att mäta komponenternas elektriska egenskaper under tillverkningsprocessen erhålles en noggrannhet i partikelförflyttningen på 1 Å (en tiomiljondels millimeter). På detta sätt kan gap mellan elektroder skapas, som inte är större än avståndet mellan två atomer i ett fast material och så kallade en-elektron transistorer kan... (More) - Popular Abstract in Swedish
I ett atomkraftsmikroskop avbildar man ytor och föremål genom att känna av ojämnheter med hjälp av en vass spets. Spetsen har en diameter på ca en tusendel av ett hårstrå. I avhandlingen beskrivs en teknik för hur man med denna extremt vassa spets kan manipulera nanometerstora metall- och halvledar partiklar mellan elektroder på en yta för att bygga elektriska komponenter. Genom att mäta komponenternas elektriska egenskaper under tillverkningsprocessen erhålles en noggrannhet i partikelförflyttningen på 1 Å (en tiomiljondels millimeter). På detta sätt kan gap mellan elektroder skapas, som inte är större än avståndet mellan två atomer i ett fast material och så kallade en-elektron transistorer kan byggas. Vidare kan man genom att försiktigt putta ihop och dra isär partiklar studera elektriska kvanteffekter i de atomära kontakter som uppstår. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/39922
- author
- Junno, Tobias
- supervisor
- opponent
-
- Dr Gimzewski, James K., IBM Research Division, Zurich Research Laboratory, Switzerland
- publishing date
- 1999
- type
- Thesis
- publication status
- published
- subject
- keywords
- atomic force microscope, nanoparticles, aerosol particles, nanofabrication, quantum point contact, quantized conductance, Coulomb blockade, Coulomb staircase, double-dot, single-electron transistor, Physics, Fysik, Fysicumarkivet A:1999:Junno, AFM
- pages
- 78 pages
- publisher
- Solid State Physics, Lund University
- defense location
- Hörsal B, Fysiska institutionen, Sölvegatan 14
- defense date
- 1999-10-22 10:15:00
- external identifiers
-
- other:ISRN: LUFTD2/TFFF--99/1055--SE
- ISBN
- 91-628-3795-8
- language
- English
- LU publication?
- no
- id
- 65221a26-1984-4acd-97f7-b99a5cb024ac (old id 39922)
- date added to LUP
- 2016-04-04 10:15:48
- date last changed
- 2018-11-21 20:57:45
@phdthesis{65221a26-1984-4acd-97f7-b99a5cb024ac, abstract = {{In this thesis a technique to manipulate nanoparticles with an atomic force microscope (AFM) is presented. Particles in the size range of 5-500 nm could be positioned in arbitrary two-dimensional patterns on different surfaces by mechanically pushing them with the AFM tip. The technique which is material-independent can be applied to any type of nanometer-sized particles or objects that are free to move on a surface. Results from semiconductor and metal aerosol particles, as well as metal discs defined by electron-beam lithography are presented.<br/><br> <br/><br> The AFM manipulation technique is combined with in-situ electrical measurements of device properties for the fabrication of nanodevices based on conductance quantization and single-electron charging effects. By moving gold nanoparticles into contact with gold electrodes separated by a small gap, atomic-scale contacts were fabricated, which exhibited quantized conductance steps and could be tuned to predefined quantized conductance values. In addition, two different techniques to build single-electron devices are presented: (i) The mechanical tuning of tunnel gaps with gold or palladium discs and (ii) by using oxidized indium aerosol particles as the central island. In the first technique gaps, only a couple of Å wide could be produced, with potential applications not only as tunnel junctions but also for the investigation of single molecules. Single and double-island single-electron transistors (SETs) were fabricated, with gate oscillations being observed at temperatures up to 25 K.}}, author = {{Junno, Tobias}}, isbn = {{91-628-3795-8}}, keywords = {{atomic force microscope; nanoparticles; aerosol particles; nanofabrication; quantum point contact; quantized conductance; Coulomb blockade; Coulomb staircase; double-dot; single-electron transistor; Physics; Fysik; Fysicumarkivet A:1999:Junno; AFM}}, language = {{eng}}, publisher = {{Solid State Physics, Lund University}}, title = {{Manipulation of Nanoparticles for Quantum and Single-Electron Devices}}, year = {{1999}}, }