Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Generation of Free Carriers in MoSe2 Monolayers Via Energy Transfer from CsPbBr3 Nanocrystals

Asaithambi, Aswin ; Kazemi Tofighi, Nastaran ; Curreli, Nicola ; De Franco, Manuela ; Patra, Aniket ; Petrini, Nicolò ; Baranov, Dmitry LU orcid ; Manna, Liberato ; Stasio, Francesco Di and Kriegel, Ilka (2022) In Advanced Optical Materials 10(14).
Abstract

Transition metal dichalcogenide (TMDCs) monolayers make an excellent component in optoelectronic devices such as photodetectors and phototransistors. Selenide-based TMDCs, specifically molybdenum diselenide (MoSe2) monolayers with low defect densities, show much faster photoresponses compared to their sulfide counterpart. However, the typically low absorption of the atomically thin MoSe2 monolayer and high exciton binding energy limit the photogeneration of charge carriers. Yet, integration of light-harvesting materials with TMDCs can produce increased photocurrents via energy transfer. In this article, it is demonstrated that the interaction of cesium lead bromide (CsPbBr3) nanocrystals with... (More)

Transition metal dichalcogenide (TMDCs) monolayers make an excellent component in optoelectronic devices such as photodetectors and phototransistors. Selenide-based TMDCs, specifically molybdenum diselenide (MoSe2) monolayers with low defect densities, show much faster photoresponses compared to their sulfide counterpart. However, the typically low absorption of the atomically thin MoSe2 monolayer and high exciton binding energy limit the photogeneration of charge carriers. Yet, integration of light-harvesting materials with TMDCs can produce increased photocurrents via energy transfer. In this article, it is demonstrated that the interaction of cesium lead bromide (CsPbBr3) nanocrystals with MoSe2 monolayers results into an energy transfer efficiency of over 86%, as ascertained from the quenching and decay dynamics of the CsPbBr3 nanocrystals emission. Notably, the increase in the MoSe2 monolayer emission in the heterostructure accounts only for 33% of the transferred energy. It is found that part of the excess energy generates directly free carriers in the MoSe2 monolayer, as a result of the transfer of energy into the exciton continuum. The efficiency of the heterostructure via enhanced photocurrents with respect to the single material unit is proven. These results demonstrate a viable route to overcome the high exciton binding energy typical for TMDCs, as such having an impact on optoelectronic processes that rely on efficient exciton dissociation.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
publishing date
type
Contribution to journal
publication status
published
keywords
energy transfer, excitons, free carrier generation, perovskite nanocrystals, transition metal dichalcogenides, trions
in
Advanced Optical Materials
volume
10
issue
14
article number
2200638
pages
9 pages
publisher
John Wiley & Sons Inc.
external identifiers
  • scopus:85131953738
ISSN
2195-1071
DOI
10.1002/adom.202200638
language
English
LU publication?
no
additional info
Publisher Copyright: © 2022 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH.
id
65eaf6c5-2d89-40bf-8129-5a0a0ff38b10
date added to LUP
2023-01-17 11:51:23
date last changed
2023-01-26 12:43:07
@article{65eaf6c5-2d89-40bf-8129-5a0a0ff38b10,
  abstract     = {{<p>Transition metal dichalcogenide (TMDCs) monolayers make an excellent component in optoelectronic devices such as photodetectors and phototransistors. Selenide-based TMDCs, specifically molybdenum diselenide (MoSe<sub>2</sub>) monolayers with low defect densities, show much faster photoresponses compared to their sulfide counterpart. However, the typically low absorption of the atomically thin MoSe<sub>2</sub> monolayer and high exciton binding energy limit the photogeneration of charge carriers. Yet, integration of light-harvesting materials with TMDCs can produce increased photocurrents via energy transfer. In this article, it is demonstrated that the interaction of cesium lead bromide (CsPbBr<sub>3</sub>) nanocrystals with MoSe<sub>2</sub> monolayers results into an energy transfer efficiency of over 86%, as ascertained from the quenching and decay dynamics of the CsPbBr<sub>3</sub> nanocrystals emission. Notably, the increase in the MoSe<sub>2</sub> monolayer emission in the heterostructure accounts only for 33% of the transferred energy. It is found that part of the excess energy generates directly free carriers in the MoSe<sub>2</sub> monolayer, as a result of the transfer of energy into the exciton continuum. The efficiency of the heterostructure via enhanced photocurrents with respect to the single material unit is proven. These results demonstrate a viable route to overcome the high exciton binding energy typical for TMDCs, as such having an impact on optoelectronic processes that rely on efficient exciton dissociation.</p>}},
  author       = {{Asaithambi, Aswin and Kazemi Tofighi, Nastaran and Curreli, Nicola and De Franco, Manuela and Patra, Aniket and Petrini, Nicolò and Baranov, Dmitry and Manna, Liberato and Stasio, Francesco Di and Kriegel, Ilka}},
  issn         = {{2195-1071}},
  keywords     = {{energy transfer; excitons; free carrier generation; perovskite nanocrystals; transition metal dichalcogenides; trions}},
  language     = {{eng}},
  month        = {{07}},
  number       = {{14}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{Advanced Optical Materials}},
  title        = {{Generation of Free Carriers in MoSe<sub>2</sub> Monolayers Via Energy Transfer from CsPbBr<sub>3</sub> Nanocrystals}},
  url          = {{http://dx.doi.org/10.1002/adom.202200638}},
  doi          = {{10.1002/adom.202200638}},
  volume       = {{10}},
  year         = {{2022}},
}