Advanced

Performance of density functionals for first row transition metal systems

Jensen, Kasper LU ; Roos, Björn LU and Ryde, Ulf LU (2007) In Journal of Chemical Physics 126(1).
Abstract
This article investigates the performance of five commonly used density functionals, B3LYP, BP86, PBE0, PBE, and BLYP, for studying diatomic molecules consisting of a first row transition metal bonded to H, F, Cl, Br, N, C, O, or S. Results have been compared with experiment wherever possible. Open-shell configurations are found more often in the order PBE0 > B3LYP > PBE similar to BP86 > BLYP. However, on average, 58 of 63 spins are correctly predicted by any functional, with only small differences. BP86 and PBE are slightly better for obtaining geometries, with errors of only 0.020 A. Hybrid functionals tend to overestimate bond lengths by a few picometers and underestimate bond strengths by favoring open shells. Nonhybrid... (More)
This article investigates the performance of five commonly used density functionals, B3LYP, BP86, PBE0, PBE, and BLYP, for studying diatomic molecules consisting of a first row transition metal bonded to H, F, Cl, Br, N, C, O, or S. Results have been compared with experiment wherever possible. Open-shell configurations are found more often in the order PBE0 > B3LYP > PBE similar to BP86 > BLYP. However, on average, 58 of 63 spins are correctly predicted by any functional, with only small differences. BP86 and PBE are slightly better for obtaining geometries, with errors of only 0.020 A. Hybrid functionals tend to overestimate bond lengths by a few picometers and underestimate bond strengths by favoring open shells. Nonhybrid functionals usually overestimate bond energies. All functionals exhibit similar errors in bond energies, between 42 and 53 kJ/mol. Late transition metals are found to be better modeled by hybrid functionals, whereas nonhybrid functionals tend to have less of a preference. There are systematic errors in predicting certain properties that could be remedied. BLYP performs the best for ionization potentials studied here, PBE0 the worst. In other cases, errors are similar. Finally, there is a clear tendency for hybrid functionals to give larger dipole moments than nonhybrid functionals. These observations may be helpful in choosing and improving existing functionals for tasks involving transition metals, and for designing new, improved functionals. (c) 2007 American Institute of Physics. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Chemical Physics
volume
126
issue
1
publisher
American Institute of Physics
external identifiers
  • wos:000243380000007
  • scopus:33846103838
ISSN
0021-9606
DOI
10.1063/1.2406071
language
English
LU publication?
yes
id
049bc6cb-d715-4c4e-ab82-f446a20cb811 (old id 679360)
date added to LUP
2007-12-13 10:38:27
date last changed
2017-10-22 03:40:42
@article{049bc6cb-d715-4c4e-ab82-f446a20cb811,
  abstract     = {This article investigates the performance of five commonly used density functionals, B3LYP, BP86, PBE0, PBE, and BLYP, for studying diatomic molecules consisting of a first row transition metal bonded to H, F, Cl, Br, N, C, O, or S. Results have been compared with experiment wherever possible. Open-shell configurations are found more often in the order PBE0 > B3LYP > PBE similar to BP86 > BLYP. However, on average, 58 of 63 spins are correctly predicted by any functional, with only small differences. BP86 and PBE are slightly better for obtaining geometries, with errors of only 0.020 A. Hybrid functionals tend to overestimate bond lengths by a few picometers and underestimate bond strengths by favoring open shells. Nonhybrid functionals usually overestimate bond energies. All functionals exhibit similar errors in bond energies, between 42 and 53 kJ/mol. Late transition metals are found to be better modeled by hybrid functionals, whereas nonhybrid functionals tend to have less of a preference. There are systematic errors in predicting certain properties that could be remedied. BLYP performs the best for ionization potentials studied here, PBE0 the worst. In other cases, errors are similar. Finally, there is a clear tendency for hybrid functionals to give larger dipole moments than nonhybrid functionals. These observations may be helpful in choosing and improving existing functionals for tasks involving transition metals, and for designing new, improved functionals. (c) 2007 American Institute of Physics.},
  articleno    = {014103},
  author       = {Jensen, Kasper and Roos, Björn and Ryde, Ulf},
  issn         = {0021-9606},
  language     = {eng},
  number       = {1},
  publisher    = {American Institute of Physics},
  series       = {Journal of Chemical Physics},
  title        = {Performance of density functionals for first row transition metal systems},
  url          = {http://dx.doi.org/10.1063/1.2406071},
  volume       = {126},
  year         = {2007},
}