Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation.

Bergdahl, Basti LU ; Sandström, Anders LU ; Tufvegren, Celina LU ; Boonyawan, Tarinee ; van Niel, Ed LU and Gorwa-Grauslund, Marie-Francoise LU (2013) In PLoS ONE 8(9).
Abstract
Hexokinase 2 (Hxk2p) from Saccharomyces cerevisiae is a bi-functional enzyme being both a catalyst and an important regulator in the glucose repression signal. In the presence of xylose Hxk2p is irreversibly inactivated through an autophosphorylation mechanism, affecting all functions. Consequently, the regulation of genes involved in sugar transport and fermentative metabolism is impaired. The aim of the study was to obtain new Hxk2p-variants, immune to the autophosphorylation, which potentially can restore the repressive capability closer to its nominal level. In this study we constructed the first condensed, rationally designed combinatorial library targeting the active-site in Hxk2p. We combined protein engineering and genetic... (More)
Hexokinase 2 (Hxk2p) from Saccharomyces cerevisiae is a bi-functional enzyme being both a catalyst and an important regulator in the glucose repression signal. In the presence of xylose Hxk2p is irreversibly inactivated through an autophosphorylation mechanism, affecting all functions. Consequently, the regulation of genes involved in sugar transport and fermentative metabolism is impaired. The aim of the study was to obtain new Hxk2p-variants, immune to the autophosphorylation, which potentially can restore the repressive capability closer to its nominal level. In this study we constructed the first condensed, rationally designed combinatorial library targeting the active-site in Hxk2p. We combined protein engineering and genetic engineering for efficient screening and identified a variant with Phe159 changed to tyrosine. This variant had 64% higher catalytic activity in the presence of xylose compared to the wild-type and is expected to be a key component for increasing the productivity of recombinant xylose-fermenting strains for bioethanol production from lignocellulosic feedstocks. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
8
issue
9
article number
e75055
publisher
Public Library of Science (PLoS)
external identifiers
  • wos:000324856500101
  • pmid:24040384
  • scopus:84883615587
  • pmid:24040384
ISSN
1932-6203
DOI
10.1371/journal.pone.0075055
language
English
LU publication?
yes
id
68b336c9-0ce0-41d8-a21e-138ba216e291 (old id 4065755)
date added to LUP
2016-04-01 14:30:24
date last changed
2024-02-25 15:27:31
@article{68b336c9-0ce0-41d8-a21e-138ba216e291,
  abstract     = {{Hexokinase 2 (Hxk2p) from Saccharomyces cerevisiae is a bi-functional enzyme being both a catalyst and an important regulator in the glucose repression signal. In the presence of xylose Hxk2p is irreversibly inactivated through an autophosphorylation mechanism, affecting all functions. Consequently, the regulation of genes involved in sugar transport and fermentative metabolism is impaired. The aim of the study was to obtain new Hxk2p-variants, immune to the autophosphorylation, which potentially can restore the repressive capability closer to its nominal level. In this study we constructed the first condensed, rationally designed combinatorial library targeting the active-site in Hxk2p. We combined protein engineering and genetic engineering for efficient screening and identified a variant with Phe159 changed to tyrosine. This variant had 64% higher catalytic activity in the presence of xylose compared to the wild-type and is expected to be a key component for increasing the productivity of recombinant xylose-fermenting strains for bioethanol production from lignocellulosic feedstocks.}},
  author       = {{Bergdahl, Basti and Sandström, Anders and Tufvegren, Celina and Boonyawan, Tarinee and van Niel, Ed and Gorwa-Grauslund, Marie-Francoise}},
  issn         = {{1932-6203}},
  language     = {{eng}},
  number       = {{9}},
  publisher    = {{Public Library of Science (PLoS)}},
  series       = {{PLoS ONE}},
  title        = {{Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation.}},
  url          = {{http://dx.doi.org/10.1371/journal.pone.0075055}},
  doi          = {{10.1371/journal.pone.0075055}},
  volume       = {{8}},
  year         = {{2013}},
}