A PSA SNP associates with cellular function and clinical outcome in men with prostate cancer
(2024) In Nature Communications 15. p.1-21- Abstract
Genetic variation at the 19q13.3 KLK locus is linked with prostate cancer susceptibility in men. The non-synonymous KLK3 single nucleotide polymorphism (SNP), rs17632542 (c.536 T > C; Ile163Thr-substitution in PSA) is associated with reduced prostate cancer risk, however, the functional relevance is unknown. Here, we identify that the SNP variant-induced change in PSA biochemical activity mediates prostate cancer pathogenesis. The ‘Thr’ PSA variant leads to small subcutaneous tumours, supporting reduced prostate cancer risk. However, ‘Thr’ PSA also displays higher metastatic potential with pronounced osteolytic activity in an experimental metastasis in-vivo model. Biochemical characterisation of this PSA variant demonstrates markedly... (More)
Genetic variation at the 19q13.3 KLK locus is linked with prostate cancer susceptibility in men. The non-synonymous KLK3 single nucleotide polymorphism (SNP), rs17632542 (c.536 T > C; Ile163Thr-substitution in PSA) is associated with reduced prostate cancer risk, however, the functional relevance is unknown. Here, we identify that the SNP variant-induced change in PSA biochemical activity mediates prostate cancer pathogenesis. The ‘Thr’ PSA variant leads to small subcutaneous tumours, supporting reduced prostate cancer risk. However, ‘Thr’ PSA also displays higher metastatic potential with pronounced osteolytic activity in an experimental metastasis in-vivo model. Biochemical characterisation of this PSA variant demonstrates markedly reduced proteolytic activity that correlates with differences in in-vivo tumour burden. The SNP is associated with increased risk for aggressive disease and prostate cancer-specific mortality in three independent cohorts, highlighting its critical function in mediating metastasis. Carriers of this SNP allele have reduced serum total PSA and a higher free/total PSA ratio that could contribute to late biopsy decisions and delay in diagnosis. Our results provide a molecular explanation for the prominent 19q13.3 KLK locus, rs17632542 SNP, association with a spectrum of prostate cancer clinical outcomes.
(Less)
- author
- Srinivasan, Srilakshmi
; Melander, Olle
LU
; Dahlin, Anders LU ; Häggström, Christel LU ; Lilja, Hans LU
and Eeles, Rosalind
- author collaboration
- organization
-
- MultiPark: Multidisciplinary research focused on Parkinson's disease
- EXODIAB: Excellence of Diabetes Research in Sweden
- EpiHealth: Epidemiology for Health
- Cardiovascular Research - Hypertension (research group)
- Internal Medicine - Epidemiology (research group)
- LUCC: Lund University Cancer Centre
- Clinical Chemistry, Malmö (research group)
- publishing date
- 2024-12
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Male, Humans, Prostatic Neoplasms/genetics, Polymorphism, Single Nucleotide, Prostate-Specific Antigen/blood, Kallikreins/genetics, Genetic Predisposition to Disease, Aged, Animals, Chromosomes, Human, Pair 19/genetics, Middle Aged, Mice, Alleles, Cell Line, Tumor
- in
- Nature Communications
- volume
- 15
- article number
- 9587
- pages
- 1 - 21
- publisher
- Nature Publishing Group
- external identifiers
-
- scopus:85208688536
- pmid:39505858
- pmid:39505858
- ISSN
- 2041-1723
- DOI
- 10.1038/s41467-024-52472-6
- language
- English
- LU publication?
- yes
- additional info
- Publisher Copyright: © The Author(s) 2024.
- id
- 6a7abe6e-88fd-4e61-9467-c0ded02a4ef8
- date added to LUP
- 2024-11-10 10:40:29
- date last changed
- 2025-07-01 02:25:39
@article{6a7abe6e-88fd-4e61-9467-c0ded02a4ef8, abstract = {{<p>Genetic variation at the 19q13.3 KLK locus is linked with prostate cancer susceptibility in men. The non-synonymous KLK3 single nucleotide polymorphism (SNP), rs17632542 (c.536 T > C; Ile163Thr-substitution in PSA) is associated with reduced prostate cancer risk, however, the functional relevance is unknown. Here, we identify that the SNP variant-induced change in PSA biochemical activity mediates prostate cancer pathogenesis. The ‘Thr’ PSA variant leads to small subcutaneous tumours, supporting reduced prostate cancer risk. However, ‘Thr’ PSA also displays higher metastatic potential with pronounced osteolytic activity in an experimental metastasis in-vivo model. Biochemical characterisation of this PSA variant demonstrates markedly reduced proteolytic activity that correlates with differences in in-vivo tumour burden. The SNP is associated with increased risk for aggressive disease and prostate cancer-specific mortality in three independent cohorts, highlighting its critical function in mediating metastasis. Carriers of this SNP allele have reduced serum total PSA and a higher free/total PSA ratio that could contribute to late biopsy decisions and delay in diagnosis. Our results provide a molecular explanation for the prominent 19q13.3 KLK locus, rs17632542 SNP, association with a spectrum of prostate cancer clinical outcomes.</p>}}, author = {{Srinivasan, Srilakshmi and Melander, Olle and Dahlin, Anders and Häggström, Christel and Lilja, Hans and Eeles, Rosalind}}, issn = {{2041-1723}}, keywords = {{Male; Humans; Prostatic Neoplasms/genetics; Polymorphism, Single Nucleotide; Prostate-Specific Antigen/blood; Kallikreins/genetics; Genetic Predisposition to Disease; Aged; Animals; Chromosomes, Human, Pair 19/genetics; Middle Aged; Mice; Alleles; Cell Line, Tumor}}, language = {{eng}}, pages = {{1--21}}, publisher = {{Nature Publishing Group}}, series = {{Nature Communications}}, title = {{A PSA SNP associates with cellular function and clinical outcome in men with prostate cancer}}, url = {{http://dx.doi.org/10.1038/s41467-024-52472-6}}, doi = {{10.1038/s41467-024-52472-6}}, volume = {{15}}, year = {{2024}}, }