Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A Glucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva

Bollella, Paolo ; Fusco, Giovanni ; Stevar, Daniela ; Gorton, Lo LU ; Ludwig, Roland ; Ma, Su ; Boer, Harry ; Koivula, Anu ; Tortolini, Cristina and Favero, Gabriele , et al. (2018) In Sensors and Actuators B: Chemical 256. p.921-930
Abstract

This paper presents a new direct electron transfer based-miniaturized glucose/oxygen enzymatic fuel cell (EFC) whose operating ability has been tested in real saliva samples. The bioanode and biocathode are a graphene working electrode and a graphite counter electrode localized on the same screen printed electrode (SPE) modified with poly(vinyl alcohol) N-methyl-4(4'-formylstyryl)pyridinium methosulfate acetal (PVA-SbQ)/cellobiose dehydrogenase from Corynascus Thermophilus (CtCDH) C291Y/AuNPs and with Trametes Hirsuta laccase (ThLac)/AuNPs, respectively.In order to optimize the bioanode, several CDH immobilization procedures were adopted, such as drop-casting, use of Nafion membrane or PVA-SbQ photopolymer. The photopolymer showed the... (More)

This paper presents a new direct electron transfer based-miniaturized glucose/oxygen enzymatic fuel cell (EFC) whose operating ability has been tested in real saliva samples. The bioanode and biocathode are a graphene working electrode and a graphite counter electrode localized on the same screen printed electrode (SPE) modified with poly(vinyl alcohol) N-methyl-4(4'-formylstyryl)pyridinium methosulfate acetal (PVA-SbQ)/cellobiose dehydrogenase from Corynascus Thermophilus (CtCDH) C291Y/AuNPs and with Trametes Hirsuta laccase (ThLac)/AuNPs, respectively.In order to optimize the bioanode, several CDH immobilization procedures were adopted, such as drop-casting, use of Nafion membrane or PVA-SbQ photopolymer. The photopolymer showed the best performance in terms of stability and reliability. As biocathode a partially optimized laccase electrode was employed with the variant that the used nanomaterials allowed to reduce the overpotential of O2/H2O redox reaction catalyzed by Trametes Hirsuta Laccase (ThLac), drop-casted onto the gold nanoparticles (AuNPs) modified SPE.The performances of bioanode and biocathode were tested separately, initially immobilizing the two enzymes onto separated graphene SPEs. An efficient direct electron transfer was achieved for both elements, obtaining an apparent heterogeneous electron transfer rate constant (ks ) of 0.99±0.05s-1 for CtCDH C291Y and 5.60±0.05s-1 for ThLac. Both electrodes were then assembled in a two compartment EFC obtaining a maximal power output of 5.16±0.15μWcm-2 at a cell voltage of 0.58V and an open circuit voltage (OCV) of 0.74V. Successively, the bioanode and biocathode were assembled in a non-compartmentalized EFC and a remarkable 50% decrease of the maximum power output at the value of 2.15±0.12μWcm-2 at cell voltage of 0.48V and an OCV of 0.62V at pH 6.5 was registered. In order to reduce the cell dimensions in view of its possible integration in biomedical devices, the bioanode and biocaythode were realized by immobilization of both enzymes onto the same SPE. The so miniaturized EFC delivered a maximal power output of 1.57±0.07μWcm2 and 1.10±0.12μWcm-2 with an OCV of 0.58V and 0.41V in a 100μM glucose solution and in human saliva, respectively.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
AuNPs, Cellobiose dehydrogenase, Direct electron transfer, Enzymatic fuel cells (EFCs), Human saliva, Laccase
in
Sensors and Actuators B: Chemical
volume
256
pages
921 - 930
publisher
Elsevier
external identifiers
  • scopus:85031316900
  • wos:000414971100109
ISSN
0925-4005
DOI
10.1016/j.snb.2017.10.025
language
English
LU publication?
yes
id
6d351da8-a762-4d67-8602-e451573953d9
date added to LUP
2017-10-30 09:47:14
date last changed
2024-04-14 20:40:17
@article{6d351da8-a762-4d67-8602-e451573953d9,
  abstract     = {{<p>This paper presents a new direct electron transfer based-miniaturized glucose/oxygen enzymatic fuel cell (EFC) whose operating ability has been tested in real saliva samples. The bioanode and biocathode are a graphene working electrode and a graphite counter electrode localized on the same screen printed electrode (SPE) modified with poly(vinyl alcohol) N-methyl-4(4'-formylstyryl)pyridinium methosulfate acetal (PVA-SbQ)/cellobiose dehydrogenase from Corynascus Thermophilus (CtCDH) C291Y/AuNPs and with Trametes Hirsuta laccase (ThLac)/AuNPs, respectively.In order to optimize the bioanode, several CDH immobilization procedures were adopted, such as drop-casting, use of Nafion membrane or PVA-SbQ photopolymer. The photopolymer showed the best performance in terms of stability and reliability. As biocathode a partially optimized laccase electrode was employed with the variant that the used nanomaterials allowed to reduce the overpotential of O<sub>2</sub>/H<sub>2</sub>O redox reaction catalyzed by Trametes Hirsuta Laccase (ThLac), drop-casted onto the gold nanoparticles (AuNPs) modified SPE.The performances of bioanode and biocathode were tested separately, initially immobilizing the two enzymes onto separated graphene SPEs. An efficient direct electron transfer was achieved for both elements, obtaining an apparent heterogeneous electron transfer rate constant (k<sub>s</sub> ) of 0.99±0.05s<sup>-1</sup> for CtCDH C291Y and 5.60±0.05s<sup>-1</sup> for ThLac. Both electrodes were then assembled in a two compartment EFC obtaining a maximal power output of 5.16±0.15μWcm<sup>-2</sup> at a cell voltage of 0.58V and an open circuit voltage (OCV) of 0.74V. Successively, the bioanode and biocathode were assembled in a non-compartmentalized EFC and a remarkable 50% decrease of the maximum power output at the value of 2.15±0.12μWcm<sup>-2</sup> at cell voltage of 0.48V and an OCV of 0.62V at pH 6.5 was registered. In order to reduce the cell dimensions in view of its possible integration in biomedical devices, the bioanode and biocaythode were realized by immobilization of both enzymes onto the same SPE. The so miniaturized EFC delivered a maximal power output of 1.57±0.07μWcm<sup>2</sup> and 1.10±0.12μWcm<sup>-2</sup> with an OCV of 0.58V and 0.41V in a 100μM glucose solution and in human saliva, respectively.</p>}},
  author       = {{Bollella, Paolo and Fusco, Giovanni and Stevar, Daniela and Gorton, Lo and Ludwig, Roland and Ma, Su and Boer, Harry and Koivula, Anu and Tortolini, Cristina and Favero, Gabriele and Antiochia, Riccarda and Mazzei, Franco}},
  issn         = {{0925-4005}},
  keywords     = {{AuNPs; Cellobiose dehydrogenase; Direct electron transfer; Enzymatic fuel cells (EFCs); Human saliva; Laccase}},
  language     = {{eng}},
  pages        = {{921--930}},
  publisher    = {{Elsevier}},
  series       = {{Sensors and Actuators B: Chemical}},
  title        = {{A Glucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva}},
  url          = {{http://dx.doi.org/10.1016/j.snb.2017.10.025}},
  doi          = {{10.1016/j.snb.2017.10.025}},
  volume       = {{256}},
  year         = {{2018}},
}