Multiagent connected path planning : pspace-completeness and how to deal with it
(2018) 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 p.4735-4742- Abstract
In the Multiagent Connected Path Planning problem (MCPP), a team of agents moving in a graph-represented environment must plan a set of start-goal joint paths which ensures global connectivity at each time step, under some communication model. The decision version of this problem asking for the existence of a plan that can be executed in at most a given number of steps is claimed to be NP-complete in the literature. The NP membership proof, however, is not detailed. In this paper, we show that, in fact, even deciding whether a feasible plan exists is a PSPACE-complete problem. Furthermore, we present three algorithms adopting different search paradigms, and we empirically show that they may efficiently obtain a feasible plan, if any... (More)
In the Multiagent Connected Path Planning problem (MCPP), a team of agents moving in a graph-represented environment must plan a set of start-goal joint paths which ensures global connectivity at each time step, under some communication model. The decision version of this problem asking for the existence of a plan that can be executed in at most a given number of steps is claimed to be NP-complete in the literature. The NP membership proof, however, is not detailed. In this paper, we show that, in fact, even deciding whether a feasible plan exists is a PSPACE-complete problem. Furthermore, we present three algorithms adopting different search paradigms, and we empirically show that they may efficiently obtain a feasible plan, if any exists, in different settings.
(Less)
- author
- Tateo, Davide
LU
; Banfi, Jacopo
; Riva, Alessandro
; Amigoni, Francesco
and Bonarini, Andrea
- publishing date
- 2018
- type
- Chapter in Book/Report/Conference proceeding
- publication status
- published
- subject
- host publication
- 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
- series title
- 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
- pages
- 8 pages
- publisher
- AAAI Press
- conference name
- 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
- conference location
- New Orleans, United States
- conference dates
- 2018-02-02 - 2018-02-07
- external identifiers
-
- scopus:85060453453
- ISBN
- 9781577358008
- language
- English
- LU publication?
- no
- id
- 7562f31c-488a-4028-a9a6-61b5b77e37e1
- date added to LUP
- 2025-10-16 14:42:28
- date last changed
- 2025-10-24 03:39:45
@inproceedings{7562f31c-488a-4028-a9a6-61b5b77e37e1,
abstract = {{<p>In the Multiagent Connected Path Planning problem (MCPP), a team of agents moving in a graph-represented environment must plan a set of start-goal joint paths which ensures global connectivity at each time step, under some communication model. The decision version of this problem asking for the existence of a plan that can be executed in at most a given number of steps is claimed to be NP-complete in the literature. The NP membership proof, however, is not detailed. In this paper, we show that, in fact, even deciding whether a feasible plan exists is a PSPACE-complete problem. Furthermore, we present three algorithms adopting different search paradigms, and we empirically show that they may efficiently obtain a feasible plan, if any exists, in different settings.</p>}},
author = {{Tateo, Davide and Banfi, Jacopo and Riva, Alessandro and Amigoni, Francesco and Bonarini, Andrea}},
booktitle = {{32nd AAAI Conference on Artificial Intelligence, AAAI 2018}},
isbn = {{9781577358008}},
language = {{eng}},
pages = {{4735--4742}},
publisher = {{AAAI Press}},
series = {{32nd AAAI Conference on Artificial Intelligence, AAAI 2018}},
title = {{Multiagent connected path planning : pspace-completeness and how to deal with it}},
year = {{2018}},
}