Advanced

Generalization of the duration-time concept for interpreting state of the art high resolution resonant photoemission spectra

Feifel, Raimund; Baev, A; Gelmukhanov, F and Ristinmaa Sörensen, Stacey LU (2004) In Physical Review A 69.
Abstract
The duration-time concept, vastly successful for interpreting the frequency dependence of resonant radiative and nonradiative x-ray scattering spectra, is tested for fine-scale features that can be obtained with state of the art high-resolution spectroscopy. For that purpose resonant photoelectron (RPE) spectra of the first three outermost singly ionized valence states X 2Σg+, A 2Πu, and B 2Σu+, are measured for selective excitations to different vibrational levels (up to n=13) of the N 1s→π* photoabsorption resonance in N2 and for negative photon frequency detuning relative to the adiabatic 0-0 transition of this resonance. It is found that different parts of the RPE spectrum converge to the spectral profile of direct photoionization... (More)
The duration-time concept, vastly successful for interpreting the frequency dependence of resonant radiative and nonradiative x-ray scattering spectra, is tested for fine-scale features that can be obtained with state of the art high-resolution spectroscopy. For that purpose resonant photoelectron (RPE) spectra of the first three outermost singly ionized valence states X 2Σg+, A 2Πu, and B 2Σu+, are measured for selective excitations to different vibrational levels (up to n=13) of the N 1s→π* photoabsorption resonance in N2 and for negative photon frequency detuning relative to the adiabatic 0-0 transition of this resonance. It is found that different parts of the RPE spectrum converge to the spectral profile of direct photoionization (fast scattering) for different detunings, and that the RPE profiles are asymmetrical as a function of frequency detuning. The observed asymmetry contradicts the picture based on the simplified notation of a common scattering duration time, but is shown to agree with the here elaborated concept of partial and mean duration times. Results of the measurements and the simulations show that the duration time of the scattering process varies for different final electronic and different final vibrational states. This owes to two physical reasons: one is the competition between the fast “vertical” and the slow “resonant” scattering channels and the other is the slowing down of the scattering process near the zeros of the real part of the scattering amplitude. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physical Review A
volume
69
publisher
American Physical Society (APS)
external identifiers
  • wos:000189386300066
DOI
10.1103/PhysRevA.69.022707
language
English
LU publication?
yes
id
41284ef1-0375-4227-a8b9-faac0a98e42e (old id 762374)
date added to LUP
2008-01-08 16:55:36
date last changed
2016-11-15 15:09:45
@article{41284ef1-0375-4227-a8b9-faac0a98e42e,
  abstract     = {The duration-time concept, vastly successful for interpreting the frequency dependence of resonant radiative and nonradiative x-ray scattering spectra, is tested for fine-scale features that can be obtained with state of the art high-resolution spectroscopy. For that purpose resonant photoelectron (RPE) spectra of the first three outermost singly ionized valence states X 2Σg+, A 2Πu, and B 2Σu+, are measured for selective excitations to different vibrational levels (up to n=13) of the N 1s→π* photoabsorption resonance in N2 and for negative photon frequency detuning relative to the adiabatic 0-0 transition of this resonance. It is found that different parts of the RPE spectrum converge to the spectral profile of direct photoionization (fast scattering) for different detunings, and that the RPE profiles are asymmetrical as a function of frequency detuning. The observed asymmetry contradicts the picture based on the simplified notation of a common scattering duration time, but is shown to agree with the here elaborated concept of partial and mean duration times. Results of the measurements and the simulations show that the duration time of the scattering process varies for different final electronic and different final vibrational states. This owes to two physical reasons: one is the competition between the fast “vertical” and the slow “resonant” scattering channels and the other is the slowing down of the scattering process near the zeros of the real part of the scattering amplitude.},
  articleno    = {22707},
  author       = {Feifel, Raimund and Baev, A and Gelmukhanov, F and Ristinmaa Sörensen, Stacey},
  language     = {eng},
  publisher    = {American Physical Society (APS)},
  series       = {Physical Review A},
  title        = {Generalization of the duration-time concept for interpreting state of the art high resolution resonant photoemission spectra},
  url          = {http://dx.doi.org/10.1103/PhysRevA.69.022707},
  volume       = {69},
  year         = {2004},
}