The effect of stellar-mass black holes on the structural evolution of massive star clusters
(2007) In Monthly Notices of the Royal Astronomical Society 379. p.40-44- Abstract
- We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius-age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant ensemble is retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations.... (More)
- We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius-age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant ensemble is retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/766528
- author
- Mackey, A.D. ; Wilkinson, M.I. ; Davies, Melvyn B LU and Gilmore, G.F.
- organization
- publishing date
- 2007
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- methods: N-body simulations, globular clusters: general, stellar dynamics, Magellanic Clouds
- in
- Monthly Notices of the Royal Astronomical Society
- volume
- 379
- pages
- 40 - 44
- publisher
- Oxford University Press
- external identifiers
-
- scopus:79952332434
- ISSN
- 1365-2966
- DOI
- 10.1111/j.1745-3933.2007.00330.x
- language
- English
- LU publication?
- yes
- id
- 105cc341-2851-441d-9466-815cabd57fdb (old id 766528)
- alternative location
- http://cdsads.u-strasbg.fr/abs/2007MNRAS.379L..40M
- date added to LUP
- 2016-04-04 11:46:59
- date last changed
- 2024-02-28 21:23:14
@article{105cc341-2851-441d-9466-815cabd57fdb, abstract = {{We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius-age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant ensemble is retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster.}}, author = {{Mackey, A.D. and Wilkinson, M.I. and Davies, Melvyn B and Gilmore, G.F.}}, issn = {{1365-2966}}, keywords = {{methods: N-body simulations; globular clusters: general; stellar dynamics; Magellanic Clouds}}, language = {{eng}}, pages = {{40--44}}, publisher = {{Oxford University Press}}, series = {{Monthly Notices of the Royal Astronomical Society}}, title = {{The effect of stellar-mass black holes on the structural evolution of massive star clusters}}, url = {{http://dx.doi.org/10.1111/j.1745-3933.2007.00330.x}}, doi = {{10.1111/j.1745-3933.2007.00330.x}}, volume = {{379}}, year = {{2007}}, }